Stop! Border Ahead: Automatic Detection of Subthalamic Exit During Deep Brain Stimulation Surgery

被引:70
|
作者
Valsky, Dan [1 ,2 ]
Marmor-Levin, Odeya [2 ]
Deffains, Marc [2 ]
Eitan, Renana [3 ]
Blackwell, Kim T. [4 ]
Bergman, Hagai [1 ,2 ]
Israel, Zvi [5 ]
机构
[1] Hebrew Univ Jerusalem, Edmond & Lily Safra Ctr Brain Res ELSC, Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Hadassah Med Sch, IMRIC, Dept Med Neurobiol Physiol, Jerusalem, Israel
[3] Hadassah Hebrew Univ, Med Ctr, Dept Psychiat, Jerusalem, Israel
[4] George Mason Univ, Krasnow Inst Adv Study, Fairfax, VA 22030 USA
[5] Hadassah Hebrew Univ, Med Ctr, Dept Neurosurg, Ctr Funct & Restorat Neurosurg, Jerusalem, Israel
关键词
subthalamic nucleus; substantia nigra; deep brain stimulation; Parkinson's disease; microelectrode recording; PARKINSONS-DISEASE; NUCLEUS STIMULATION; MICROELECTRODE RECORDINGS; BILATERAL STIMULATION; NIGRAL STIMULATION; SUBTERRITORIES; REFINEMENT; HYPOMANIA; BEHAVIOR; TRIAL;
D O I
10.1002/mds.26806
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Microelectrode recordings along preplanned trajectories are often used for accurate definition of the subthalamic nucleus (STN) borders during deep brain stimulation (DBS) surgery for Parkinson's disease. Usually, the demarcation of the STN borders is performed manually by a neurophysiologist. The exact detection of the borders is difficult, especially detecting the transition between the STN and the substantia nigra pars reticulata. Consequently, demarcation may be inaccurate, leading to suboptimal location of the DBS lead and inadequate clinical outcomes. Methods: We present machine-learning classification procedures that use microelectrode recording power spectra and allow for real-time, high-accuracy discrimination between the STN and substantia nigra pars reticulata. Results: A support vector machine procedure was tested on microelectrode recordings from 58 trajectories that included both STN and substantia nigra pars reticulata that achieved a 97.6% consistency with human expert classification (evaluated by 10-fold crossvalidation). We used the same data set as a training set to find the optimal parameters for a hidden Markov model using both microelectrode recording features and trajectory history to enable real-time classification of the ventral STN border (STN exit). Seventy-three additional trajectories were used to test the reliability of the learned statistical model in identifying the exit from the STN. The hidden Markov model procedure identified the STN exit with an error of 0.0460.18mm and detection reliability (error < 1 mm) of 94%. Conclusions: The results indicate that robust, accurate, and automatic real-time electrophysiological detection of the ventral STN border is feasible. VC 2016 International Parkinson and Movement Disorder Society.
引用
收藏
页码:70 / 79
页数:10
相关论文
共 50 条
  • [41] Revision Surgery of Deep Brain Stimulation Leads
    Falowski, Steven M.
    Bakay, Roy A. E.
    NEUROMODULATION, 2016, 19 (05): : 443 - 450
  • [42] Microelectrode accuracy in deep brain stimulation surgery
    Brahimaj, Bledi
    Kochanski, Ryan B.
    Sani, Sepehr
    JOURNAL OF CLINICAL NEUROSCIENCE, 2018, 50 : 58 - 61
  • [43] To move or not to move: Subthalamic deep brain stimulation effects on implicit motor simulation
    Tomasino, Barbara
    Marin, Dario
    Eleopra, Roberto
    Rinaldo, Sara
    Cristian, Lettieri
    Marco, Mucchiut
    Enrico, Belgrado
    Zanier, Monica
    Budai, Riccardo
    Mondani, Massimo
    D'Auria, Stanislao
    Skrap, Miran
    Fabbro, Franco
    BRAIN RESEARCH, 2014, 1574 : 14 - 25
  • [44] Functional Imaging of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease
    Boertien, Tessel
    Zrinzo, Ludvic
    Kahan, Joshua
    Jahanshahi, Marjan
    Hariz, Marwan
    Mancini, Laura
    Limousin, Patricia
    Foltynie, Thomas
    MOVEMENT DISORDERS, 2011, 26 (10) : 1835 - 1843
  • [45] Motor speech effects in subthalamic deep brain stimulation for Parkinson?s disease
    Kluin, Karen J.
    Mossner, James M.
    Costello, Joseph T.
    Chou, Kelvin L.
    Patil, Parag G.
    JOURNAL OF NEUROSURGERY, 2021, 137 (03) : 722 - 728
  • [46] Age Limits for Deep Brain Stimulation of Subthalamic Nuclei in Parkinson's Disease
    Bouwyn, Jean-Paul
    Derrey, Stephane
    Lefaucheur, Romain
    Fetter, Damien
    Rouille, Audrey
    Le Goff, Floriane
    Maltete, David
    JOURNAL OF PARKINSONS DISEASE, 2016, 6 (02) : 393 - 400
  • [47] Motor speech effects in subthalamic deep brain stimulation for Parkinson's disease
    Kluin, Karen J.
    Mossner, James M.
    Costello, Joseph T.
    Chou, Kelvin L.
    Patil, Parag G.
    JOURNAL OF NEUROSURGERY, 2022, 137 (03) : 722 - 728
  • [48] Bilateral subthalamic deep brain stimulation using single track microelectrode recording
    Chang, Won Seok
    Kim, Hae Yu
    Kim, Joo Pyung
    Park, Young Seok
    Chung, Sang Sup
    Chang, Jin Woo
    ACTA NEUROCHIRURGICA, 2011, 153 (05) : 1087 - 1095
  • [49] Outcomes of Interventional-MRI Versus Microelectrode Recording-Guided Subthalamic Deep Brain Stimulation
    Lee, Philip S.
    Weiner, Gregory M.
    Corson, Danielle
    Kappel, Jessica
    Chang, Yue-Fang
    Suski, Valerie R.
    Berman, Sarah B.
    Homayoun, Houman
    Van Laar, Amber D.
    Crammond, Donald J.
    Richardson, R. Mark
    FRONTIERS IN NEUROLOGY, 2018, 9
  • [50] Deep Brain Stimulation for Obsessive-Compulsive Disorder: Subthalamic Nucleus Target
    Chabardes, Stephan
    Polosan, Mircea
    Krack, Paul
    Bastin, Julien
    Krainik, Alexandre
    David, Olivier
    Bougerol, Thierry
    Benabid, Alim Louis
    WORLD NEUROSURGERY, 2013, 80 (3-4) : S31.e1 - S31.e8