Bipartite minors

被引:6
|
作者
Chudnovsky, Maria [1 ]
Kalai, Gil [2 ,3 ,4 ]
Nevo, Eran [2 ,5 ]
Novik, Isabella [6 ]
Seymour, Paul [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[3] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
[4] Yale Univ, Dept Math, New Haven, CT 06511 USA
[5] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[6] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Minors; Bipartite graphs; Bipartite minors; Kuratowski's theorem; Laman graphs; Planar and outerplanar graphs; Peripheral cycles; GRAPHS;
D O I
10.1016/j.jctb.2015.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of bipartite minors and prove a bipartite analog of Wagner's theorem: a bipartite graph is planar if and only if it does not contain K-3,K-3 as a bipartite minor. Similarly, we provide a forbidden minor characterization for outerplanar graphs and forests. We then establish a recursive characterization of bipartite (2,2)-Laman graphs a certain family of graphs that contains all maximal bipartite planar graphs. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [1] Topological minors in bipartite graphs
    Camino Balbuena
    Martín Cera
    Pedro García-Vázquez
    Juan Carlos Valenzuela
    Acta Mathematica Sinica, English Series, 2011, 27 : 2085 - 2100
  • [2] Topological Minors in Bipartite Graphs
    Balbuena, Camino
    Cera, Martin
    Garcia-Vazquez, Pedro
    Carlos Valenzuela, Juan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2085 - 2100
  • [3] A Flat Wall Theorem for Matching Minors in Bipartite Graphs
    Giannopoulou, Archontia C.
    Wiederrecht, Sebastian
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 716 - 727
  • [4] Minors in Random and Expanding Hypergraphs
    Wagner, Uli
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 351 - 360
  • [5] Explicit bounds for graph minors
    Geelen, Jim
    Huynh, Tony
    Richter, R. Bruce
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 132 : 80 - 106
  • [6] On matroid minors that guarantee their duals as minors
    Taylor, Jesse
    ADVANCES IN APPLIED MATHEMATICS, 2015, 71 : 14 - 33
  • [7] ALGORITHMS FOR RECOGNIZING BIPARTITE-HELLY AND BIPARTITE-CONFORMAL HYPERGRAPHS
    Groshaus, Marina
    Szwarcfiter, Jayme Luis
    RAIRO-OPERATIONS RESEARCH, 2011, 45 (03) : 209 - 222
  • [8] CYCLABILITY IN BIPARTITE GRAPHS
    Amar, Denise
    Flandrin, Evelyne
    Gancarzewicz, Grzegorz
    OPUSCULA MATHEMATICA, 2009, 29 (04) : 345 - 364
  • [9] Cyclability and pancyclability in bipartite graphs
    Abderrezzak, ME
    Flandrin, E
    Amar, D
    DISCRETE MATHEMATICS, 2001, 236 (1-3) : 3 - 11
  • [10] On bipartite cages of excess 4
    Filipovski, Slobodan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01)