ON FUNDAMENTAL FOURIER COEFFICIENTS OF SIEGEL MODULAR FORMS

被引:5
作者
Boecherer, Siegfried [1 ]
Das, Soumya [2 ,3 ]
机构
[1] Univ Mannheim, Inst Math, D-58131 Mannheim, Germany
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[3] Univ Mannheim, D-68131 Mannheim, Germany
关键词
Fourier coefficients; Siegel modular forms; fundamental discriminant; vector-valued; nonvanishing; CUSP FORMS; DENSITY-THEOREM; JACOBI FORMS;
D O I
10.1017/S1474748021000086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if F is a nonzero (possibly noncuspidal) vector-valued Siegel modular form of any degree, then it has infinitely many nonzero Fourier coefficients which are indexed by half-integral matrices having odd, square-free (and thus fundamental) discriminant. The proof uses an induction argument in the setting of vector-valued modular forms. Further, as an application of a variant of our result and complementing the work of A. Pollack, we show how to obtain an unconditional proof of the functional equation of the spinor L-function of a holomorphic cuspidal Siegel eigenform of degree 3 and level 1.
引用
收藏
页码:2001 / 2041
页数:41
相关论文
共 45 条
[1]  
Abramowitz N., 1965, HDB MATH FUNCTIONS
[2]  
Ajouz A., 2015, Hecke operators on Jacobi forms of lattice index and the relation to elliptic modular forms
[3]   DISTINGUISHING HERMITIAN CUSP FORMS OF DEGREE 2 BY A CERTAIN SUBSET OF ALL FOURIER COEFFICIENTS [J].
Anamby, Pramath ;
Das, Soumya .
PUBLICACIONS MATEMATIQUES, 2019, 63 (01) :307-341
[4]  
Andrianov A., 1974, Russian Math Surveys, V29, P45
[5]   EULER EXPANSIONS OF THETA-TRANSFORMS OF SIEGEL MODULAR FORMS OF DEGREE-N [J].
ANDRIANOV, AN .
MATHEMATICS OF THE USSR-SBORNIK, 1978, 34 (03) :259-300
[6]  
[Anonymous], 1979, RUSS MATH SURV+, V34, P75
[7]   Siegel modular forms and representations [J].
Asgari, M ;
Schmidt, R .
MANUSCRIPTA MATHEMATICA, 2001, 104 (02) :173-200
[8]   The Chebotarev density theorem in short intervals and some questions of Serre [J].
Balog, A ;
Ono, K .
JOURNAL OF NUMBER THEORY, 2001, 91 (02) :356-371
[9]   THE FOURIER-JACOBI DEVELOPMENT OF SIEGEL EISENSTEIN SERIES [J].
BOCHERER, S .
MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) :21-46
[10]   Petersson norms of not necessarily cuspidal Jacobi modular forms and applications [J].
Boecherer, Siegfried ;
Das, Soumya .
ADVANCES IN MATHEMATICS, 2018, 336 :335-376