Size, geometry, and material effects in fracture toughness testing of irradiated Zr-2.5Nb pressure tube material

被引:4
|
作者
Davies, PH [1 ]
Shewfelt, RSW [1 ]
机构
[1] AECL Res, Chalk River Labs, Chalk River, ON K0J 1J0, Canada
关键词
fracture toughness; Zr-2.5Nb; irradiation; pressure tubes; crack growth resistance (J-R) curve; slant fracture; shear fracture;
D O I
10.1520/STP14308S
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The effect of initial crack size on the crack growth resistance (J-R) curves determined from burst tests on irradiated Zr-2.5Nb pressure tubes has been studied and the results compared with those obtained from matched curved compact specimens. The study used sections from three different tubes representative of material of low, intermediate. and high toughness. In each case a series of burst tests was conducted at 250 degrees C with different starting crack sizes (from 35 to 85 mm) followed by small specimen testing. The toughness was characterized by means of deformation J-R curves using the d-c potential drop method to measure stable crack growth. Fractographic studies were also conducted in support of the J-R curve results. For tubes of low to intermediate toughness there is little evidence of a crack size effect on the J-R curves from the burst tests. However, for burst tests on tubes of higher toughness there is an increase in out-of-plane bending associated with the wider crack openings (bulging) that can promote earlier failure by slant/shear instability and a lowering of the J-R curve. Thus the J-R curves from such tubes exhibit more variability in toughness as well as an apparent crack size dependence. Such crack growth behavior overrides any increase in material toughness with irradiation temperature as revealed by the small specimens.
引用
收藏
页码:356 / 376
页数:21
相关论文
共 50 条
  • [1] Effects of Hydride Morphology and Test Temperature on Fracture Toughness of Zr-2.5Nb Pressure Tube Material
    Cui, Jun
    Shek, Gordon K.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 6, PTS A AND B, 2010, : 81 - 96
  • [2] Deformation behavior of irradiated Zr-2.5Nb pressure tube material
    Himbeault, D.D.
    Chow, C.K.
    Puls, M.P.
    Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25 A (01): : 135 - 142
  • [3] Fracture toughness of irradiated Zr-2.5Nb pressure tube from Indian PHWR
    Shah, Priti Kotak
    Dubey, J. S.
    Shriwastaw, R. S.
    Dhotre, M. P.
    Bhandekar, A.
    Pandit, K. M.
    Anantharaman, S.
    Singh, R. N.
    Chakravartty, J. K.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 458 : 319 - 325
  • [4] DEFORMATION-BEHAVIOR OF IRRADIATED ZR-2.5NB PRESSURE TUBE MATERIAL
    HIMBEAULT, DD
    CHOW, CK
    PULS, MP
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1994, 25 (01): : 135 - 145
  • [5] Effect of direction of approach of test temperature on fracture toughness of Zr-2.5Nb pressure tube material
    Singh, R. N.
    Bind, A. K.
    Khandelwal, H. K.
    Rath, B. N.
    Sunil, S.
    Stahle, P.
    Chakravartty, J. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 621 : 190 - 197
  • [6] Effect of radial hydride on room temperature fracture toughness of Zr-2.5Nb pressure tube material
    Gopalan, Avinash
    Bind, A. K.
    Sunil, Saurav
    Murty, T. N.
    Sharma, R. K.
    Samanta, Akanksha
    Soren, Amit
    Singh, R. N.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 544
  • [7] Influence of loading rate and hydrogen content on fracture toughness of Zr-2.5Nb pressure tube material
    Bind, A. K.
    Singh, R. N.
    Khandelwal, H. K.
    Sunil, S.
    Avinash, G.
    Chakravartty, J. K.
    Stahle, P.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 465 : 177 - 188
  • [8] Anisotropy of yielding in a Zr-2.5Nb pressure tube material
    N. Christodoulou
    M. Resta Levi
    P. A. Turner
    E. T. C. Ho
    C. K. Chow
    Metallurgical and Materials Transactions A, 2000, 31 : 409 - 420
  • [9] Study on Microstructure of Zr-2.5Nb Pressure Tube Material
    Guo L.
    Han H.
    Bian W.
    Chu F.
    Qian J.
    Liang Z.
    1600, Atomic Energy Press (38): : 89 - 93
  • [10] Anisotropy of yielding in a Zr-2.5Nb pressure tube material
    Christodoulou, N
    Turner, PA
    Ho, ETC
    Chow, CK
    Levi, MR
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2000, 31 (02): : 409 - 420