Topological excitations in a two-dimensional spin system with high spin s≥1

被引:2
作者
Bernatska, J. N. [1 ,2 ]
Holod, P. I. [1 ,2 ]
机构
[1] Natl Taras Shevchenko Univ Kiev, Mohyla Acad, Kiev, Ukraine
[2] Bogoliubov Inst Theoret Phys, Kiev, Ukraine
关键词
order parameter; mean field; effective Hamiltonian; coadjoint orbit;
D O I
10.1007/s11232-009-0077-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a class of topological excitations of a mean field in a two-dimensional spin system represented by a quantum Heisenberg model with high powers of the exchange interaction. The quantum model is associated with a classical model (the continuous classical analogue) based on a Landau-Lifshitz-like equation, which describes large-scale fluctuations of the mean field. On the other hand, the classical model in the case of spin s is a Hamiltonian system on a coadjoint orbit of the unitary group SU(2s+1). We construct a class of mean-field configurations that can be interpreted as topological excitations because they have fixed topological charges. Such excitations change their shapes and grow, conserving energy.
引用
收藏
页码:878 / 886
页数:9
相关论文
共 10 条
[1]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[2]   A generalized Landau-Lifshitz equation for an isotropic SU(3) magnet [J].
Bernatska, J. ;
Holod, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (07)
[3]  
BERNATSKA J, 2008, ARXIV08012913V2MATHR
[4]  
Bernatska J., 2008, P 9 INT C GEOMETRY I, P146
[5]  
BOGOLUBOV NN, 1994, INTRO QUANTUM STAT M
[6]   Probable absence of a quadrupolar spin-nematic phase in the bilinear-biquadratic spin-1 chain -: art. no. 054433 [J].
Buchta, K ;
Fáth, G ;
Legeza, O ;
Sólyom, J .
PHYSICAL REVIEW B, 2005, 72 (05)
[7]  
Matveev V. M., 1974, Sov. Phys. JETP, V38, P813
[8]   ABSENCE OF FERROMAGNETISM OR ANTIFERROMAGNETISM IN ONE- OR 2-DIMENSIONAL ISOTROPIC HEISENBERG MODELS [J].
MERMIN, ND ;
WAGNER, H .
PHYSICAL REVIEW LETTERS, 1966, 17 (22) :1133-&
[9]   SPIN-ONE HEISENBERG-FERROMAGNET IN PRESENCE OF BIQUADRATIC EXCHANGE [J].
NAUCIELB.M ;
CASTETS, A ;
SARMA, G .
PHYSICAL REVIEW B, 1972, 5 (11) :4603-&
[10]   THE DUISTERMAAT-HECKMAN INTEGRATION FORMULA ON FLAG MANIFOLDS [J].
PICKEN, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (03) :616-638