Axisymmetric All-Carbon Devices with High-Spin Filter Efficiency, Large-Spin Rectifying, and Strong-Spin Negative Differential Resistance Properties

被引:20
作者
Hong, X. K. [1 ]
Kuang, Y. W. [1 ]
Qian, C. [1 ]
Tao, Y. M. [1 ]
Yu, H. L. [1 ]
Zhang, D. B. [1 ]
Liu, Y. S. [1 ]
Feng, J. F. [1 ]
Yang, X. F. [1 ]
Wang, X. F. [2 ]
机构
[1] Changshu Inst Technol, Coll Phys & Engn, Changshu 215500, Jiangsu, Peoples R China
[2] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou 215006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHENE NANORIBBONS; MAGNETORESISTANCE; CONDUCTANCE; TRANSPORT; CHAIN;
D O I
10.1021/acs.jpcc.5b09180
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose the perfect all-carbon axisymmetric spintronic devices consisting of a zigzag-edged trigonal graphene (ZTG) linked to left and right zigzag-edged graphene nanoribbons (ZGNR) electrodes via carbon atomic chains (CACs). To ensure the stability of the system, the edge carbon atoms are passivated by hydrogen atoms. The self-consistent density functional theory (DFT) calculations show that the simple all-carbon system possesses the prefect spin-filtering property at a wide voltage region from -1.0 to 1.0 V. More importantly, the proposed system can act as a perfect dual spin diode in the antiparallel (AP) spin configuration, and the single-spin rectifying ratio can reach 103. When we add the number of the CACs linked to the left ZGNR electrode, the device shows the obvious single-spin negative differential resistance (NDR) behavior, which originates from the appearance of the localized states in the region of the left ZGNR electrode and ZTG. Meanwhile, the perfect spin-filtering and dual spin-diode properties are also retained in the all-carbon spintronic device, and the single-spin rectifying ratio can be enhanced to about 10(4).
引用
收藏
页码:668 / 676
页数:9
相关论文
共 42 条
[1]   FeCoCp3 Molecular Magnets as Spin Filters [J].
Abufager, P. N. ;
Robles, R. ;
Lorente, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (22) :12119-12129
[2]  
[Anonymous], LECT NOTES PHYS
[3]   Ultrafast spin dynamics in ferromagnetic nickel [J].
Beaurepaire, E ;
Merle, JC ;
Daunois, A ;
Bigot, JY .
PHYSICAL REVIEW LETTERS, 1996, 76 (22) :4250-4253
[4]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[5]   Spin-dependent transport properties of a chromium porphyrin-based molecular embedded between two graphene nanoribbon electrodes [J].
Chen, Tong ;
Wang, Lingling ;
Li, Xiaofei ;
Luo, Kaiwu ;
Xu, Liang ;
Li, Quan ;
Zhang, Xianghua ;
Long, Mengqiu .
RSC ADVANCES, 2014, 4 (104) :60376-60381
[6]   Graphene Spin-Valve Device Grown Epitaxially on the Ni(111) Substrate: A First Principles Study [J].
Cho, Yeonchoo ;
Choi, Young Cheol ;
Kim, Kwang S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :6019-6023
[7]   From graphene constrictions to single carbon chains [J].
Chuvilin, Andrey ;
Meyer, Jannik C. ;
Algara-Siller, Gerardo ;
Kaiser, Ute .
NEW JOURNAL OF PHYSICS, 2009, 11
[8]   High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes [J].
Dong, Yao-Jun ;
Wang, Xue-Feng ;
Yang, Shuo-Wang ;
Wu, Xue-Mei .
SCIENTIFIC REPORTS, 2014, 4
[9]   Effects of Geometry and Symmetry on Electron Transport through Graphene-Carbon-Chain Junctions [J].
Dong, Yao-Jun ;
Wang, Xue-Feng ;
Zhai, Ming-Xing ;
Wu, Jian-Chun ;
Zhou, Liping ;
Han, Qin ;
Wu, Xue-Mei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (37) :18845-18850
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191