Position-dependent noncommutativity in quantum mechanics

被引:53
作者
Gomes, M. [1 ]
Kupriyanov, V. G. [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05508 Sao Paulo, Brazil
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 12期
关键词
SELF-DUAL FIELDS; SYMMETRY; PARTICLE;
D O I
10.1103/PhysRevD.79.125011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The model of the position-dependent noncommutativity in quantum mechanics is proposed. We start with given commutation relations between the operators of coordinates [(x) over cap (i), (x) over cap (j)] = omega(ij) ((x) over cap), and construct the complete algebra of commutation relations, including the operators of momenta. The constructed algebra is a deformation of a standard Heisenberg algebra and obeys the Jacobi identity. The key point of our construction is a proposed first-order Lagrangian, which after quantization reproduces the desired commutation relations. Also we study the possibility to localize the noncommutativity.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Born series and unitarity in noncommutative quantum mechanics [J].
Bemfica, F. S. ;
Girotti, H. O. .
PHYSICAL REVIEW D, 2008, 77 (02)
[2]   Hydrogen atom spectrum and the Lamb shift in noncommutative QED [J].
Chaichian, M ;
Sheikh-Jabbari, MM ;
Tureanu, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2716-2719
[3]  
CHAICHIAN M, ARXIV09022453
[4]   Noncommutative relativistic particle on the electromagnetic background [J].
Deriglazov, AA .
PHYSICS LETTERS B, 2003, 555 (1-2) :83-88
[5]   THE QUANTUM STRUCTURE OF SPACETIME AT THE PLANCK-SCALE AND QUANTUM-FIELDS [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :187-220
[6]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[7]   Exotic Galilean symmetry in the non-commutative plane and the Hall effect [J].
Duval, C ;
Horváthy, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47) :10097-10107
[8]   The exotic Galilei group and the "Peierls substitution" [J].
Duval, C ;
Horváthy, PA .
PHYSICS LETTERS B, 2000, 479 (1-3) :284-290
[9]   HAMILTONIAN REDUCTION OF UNCONSTRAINED AND CONSTRAINED SYSTEMS [J].
FADDEEV, L ;
JACKIW, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1692-1694
[10]   Scattering of spin 1/2 particles by the 2+1 dimensional noncommutative Aharonov-Bohm potential [J].
Ferrari, A. F. ;
Gomes, M. ;
Stechhahn, C. A. .
PHYSICAL REVIEW D, 2007, 76 (08)