p-Channel, n-Channel and ambipolar field-effect transistors based on functionalized carbon nanotube networks

被引:9
作者
Goh, Roland G. S. [2 ,3 ]
Bell, John M. [2 ]
Motta, Nunzio [2 ]
Ho, Peter K. -H. [3 ]
Waclawik, Eric R. [1 ]
机构
[1] Queensland Univ Technol, Sch Phys & Chem Sci, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Fac Built Environm & Engn, Brisbane, Qld 4000, Australia
[3] Natl Univ Singapore, Dept Phys, Singapore S117542, Singapore
关键词
Carbon nanotubes; Single-walled carbon nanotubes; Carbon nanotube network field-effect transistors; Atomic force microscopy; THIN-FILM TRANSISTORS; HIGH-PERFORMANCE; ALIGNED ARRAYS; ENERGY GAPS; TRANSPARENT; DISSOLUTION; DENSITY; ELECTRONICS; TRANSPORT; SOLVENTS;
D O I
10.1016/j.spmi.2008.12.027
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We report on the transport properties of carbon nanotube network field-effect transistors (CNNFETs) produced from size-selected and functionalized single-walled carbon nanotubes (SWNTs). The SWNTs were functionalized by grafting octadecylamine chains to the tube ends and spin casting onto prefabricated bottom gated silicon field-effect transistor substrates. Acid-oxidative cutting and centrifuge fractionation were employed to select the mean diameter and length of the SWNT bundles deposited within the active area of the CNNFETs. By comparing CNNFETs with different SWNT bundle thickness, we demonstrated that thicker-bundle samples exhibited low on/off ratio but comparatively higher field-effect mobility than small-bundle samples, which yielded devices with higher on/off ratio but lower field-effect mobility. Electronic transfer characteristics of the CNNFETs were dominated by the channel rather than contact resistance. These results demonstrate a potential new route for fabricating p- and n-type CNNFET devices. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:347 / 356
页数:10
相关论文
共 58 条
[1]  
ALI J, 2002, APPL PHYS LETT, V80, P1064
[2]  
[Anonymous], 2002, SEMICONDUCTOR DEVICE
[3]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[4]   Transparent and flexible carbon nanotube transistors [J].
Artukovic, E ;
Kaempgen, M ;
Hecht, DS ;
Roth, S ;
GrUner, G .
NANO LETTERS, 2005, 5 (04) :757-760
[5]   Chemical optimization of self-assembled carbon nanotube transistors [J].
Auvray, S ;
Derycke, V ;
Goffman, M ;
Filoramo, A ;
Jost, O ;
Bourgoin, JP .
NANO LETTERS, 2005, 5 (03) :451-455
[6]   Dissolution of small diameter single-wall carbon nanotubes in organic solvents? [J].
Bahr, JL ;
Mickelson, ET ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
CHEMICAL COMMUNICATIONS, 2001, (02) :193-194
[7]   Ink-jet printing of carbon nanotube thin film transistors [J].
Beecher, P. ;
Servati, P. ;
Rozhin, A. ;
Colli, A. ;
Scardaci, V. ;
Pisana, S. ;
Hasan, T. ;
Flewitt, A. J. ;
Robertson, J. ;
Hsieh, G. W. ;
Li, F. M. ;
Nathan, A. ;
Ferrari, A. C. ;
Milne, W. I. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (04)
[8]   Electronic properties of single-walled carbon nanotube networks [J].
Bekyarova, E ;
Itkis, ME ;
Cabrera, N ;
Zhao, B ;
Yu, AP ;
Gao, JB ;
Haddon, RC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (16) :5990-5995
[9]   A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes [J].
Chattopadhyay, D ;
Galeska, L ;
Papadimitrakopoulos, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (11) :3370-3375
[10]   Dissolution of full-length single-walled carbon nanotubes [J].
Chen, J ;
Rao, AM ;
Lyuksyutov, S ;
Itkis, ME ;
Hamon, MA ;
Hu, H ;
Cohn, RW ;
Eklund, PC ;
Colbert, DT ;
Smalley, RE ;
Haddon, RC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (13) :2525-2528