Spacelike self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean spaces

被引:10
作者
Adames, Marcio Rostirolla [1 ]
机构
[1] UTFPR, Dept Acad Matemat, BR-80230901 Curitiba, PR, Brazil
关键词
MINKOWSKI SPACE; SINGULARITIES; CONSTRUCTION; CODIMENSION; SURFACES;
D O I
10.4310/CAG.2014.v22.n5.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I classify spacelike self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean space in arbitrary codimension, if the mean curvature vector is not a null vector and the principal normal vector is parallel in the normal bundle. Moreover, I exclude the existence of such self-shrinkers in several cases. The classification is analogous to the existing classification in the Euclidean case [20, 27].
引用
收藏
页码:897 / 929
页数:33
相关论文
共 29 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175
[2]  
Adames M.R., 2012, SPACELIKE SELF SIMIL
[3]  
Anciaux H, 2006, GEOMETRIAE DEDICATA, V120, P37, DOI 10.1007/s10711-006-9082-z
[4]  
Angenent Sigurd B., 1992, PROGR NONLINEAR DIFF, V7, P21
[5]  
[Anonymous], 1983, SEMIRIEMANNIAN GEOME
[6]  
[Anonymous], 2006, Grad. Stud. Math
[7]  
Baker C., 2011, PREPRINT
[8]  
BERGNER M, 2011, DISCRETE CONT S SEP, P155
[9]  
BRAKKE KA, 1978, MATH NOTES, V20
[10]   A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension [J].
Cao, Huai-Dong ;
Li, Haizhong .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (3-4) :879-889