Inner automorphisms, discrete and micklund transformations of integrable systems

被引:0
|
作者
Leznov, A. N. [1 ]
机构
[1] Univ Autonoma Estado Morelos, CIICAP, Cuernavaca, Morelos, Mexico
关键词
inner automorphism; discrete transformation; Backlund transformation; integrable system; multi-soliton solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that there exist two inner automorphisms and a discrete transformation besides the usual Backlund transformation for the integrable focusing nonlinear Schrodinger equation. By virtue of the inner automorphisms, the discrete transformation can generate multi-soliton solutions. The expressions for multi-soliton solutions generated by the discrete and the Backlund transformations turn out to be the same.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [41] Lie Algebras and Integrable Systems
    Zhang Yu-Feng
    Mei Jian-Qin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (06) : 1012 - 1022
  • [42] Lie Algebras and Integrable Systems
    张玉峰
    梅建琴
    CommunicationsinTheoreticalPhysics, 2012, 57 (06) : 1012 - 1022
  • [43] A family of integrable systems on a sphere
    Tsiganov A.V.
    Journal of Mathematical Sciences, 2005, 125 (2) : 249 - 257
  • [44] Univalent Functions and Integrable Systems
    Dmitri Prokhorov
    Alexander Vasil'ev
    Communications in Mathematical Physics, 2006, 262 : 393 - 410
  • [45] Integrable Systems of Neumann Type
    Alina Dobrogowska
    Tudor S. Ratiu
    Journal of Dynamics and Differential Equations, 2015, 27 : 533 - 553
  • [46] Integrable systems and group actions
    Miranda, Eva
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (02): : 240 - 270
  • [47] Integrable Systems of Neumann Type
    Dobrogowska, Alina
    Ratiu, Tudor S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2015, 27 (3-4) : 533 - 553
  • [48] A geometry for multidimensional integrable systems
    Strachan, IAB
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (03) : 255 - 278
  • [49] A new class of integrable systems
    A. Lesfari
    Archiv der Mathematik, 2001, 77 : 347 - 353
  • [50] The geometry of integrable and superintegrable systems
    Ibort, A.
    Marmo, G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (02) : 1109 - 1117