CeO2 decorated graphene as separator modification material for capture and boost conversion of polysulfide in lithium-sulfur batteries

被引:63
作者
Cheng, Pu [1 ,2 ]
Guo, Pengqian [1 ,2 ]
Sun, Kai [1 ,2 ]
Zhao, Yonggang [1 ,2 ]
Liu, Dequan [1 ,2 ]
He, Deyan [1 ,2 ]
机构
[1] Lanzhou Univ, Minist Educ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-sulfur batteries; Electrocatalysis; Polysulfides conversion; Chemical immobilization; Functional separator; GEL POLYMER ELECTROLYTE; CARBON NANOTUBES; PERFORMANCE; NANOFIBER; INTERLAYER; SUPPRESS; CATHODES; SPHERE;
D O I
10.1016/j.memsci.2020.118780
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The commercialization of lithium-sulfur (Li-S) batteries is hindered by the poor electrochemical performance which mainly originates from the shuttle of polysulfides and the loss of active sulfur. In this work, a multi-functional separator modified by CeO2 decorated graphene (CeO2@G) is designed to enhance the performance of Li-S batteries. The CeO2 nanoparticles not only immobilize polysulfides by strong chemisorption, but also act as catalytic agent to accelerate polysulfides redox reaction. Moreover, the highly conductive graphene sheets functioned as an upper current collector to improve the electron/ion conductivity and facilitate the reutilization of sulfur species. As a result, the Li-S battery with the CeO2@G modified separator delivers high specific capacity (1546 mAh g-1 at 0.2 A g-1), excellent rate performance (861 mAh g-1 at 3 A g-1), and long-term cycle durability (480 mAh g-1 at 5 A g-1 after 1000 cycles). In addition, the modified separator can effectively against the self-discharge behavior. The outstanding electrochemical performance brings us a closer step towards practical applications of Li-S batteries.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries [J].
Chen, Kena ;
Cao, Jun ;
Lu, Qiongqiong ;
Wang, Qingrong ;
Yao, Minjie ;
Han, Mingming ;
Niu, Zhiqiang ;
Chen, Jun .
NANO RESEARCH, 2018, 11 (03) :1345-1357
[2]   Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries [J].
Chen, Tao ;
Zhang, Zewen ;
Cheng, Baorui ;
Chen, Renpeng ;
Hu, Yi ;
Ma, Lianbo ;
Zhu, Guoyin ;
Liu, Jie ;
Jin, Zhong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (36) :12710-12715
[3]   Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer [J].
Chen, Wansong ;
Ouyang, Jiang ;
Liu, Hong ;
Chen, Min ;
Zeng, Ke ;
Sheng, Jianping ;
Liu, Zhenjun ;
Han, Yajing ;
Wang, Liqiang ;
Li, Juan ;
Deng, Liu ;
Liu, You-Nian ;
Guo, Shaojun .
ADVANCED MATERIALS, 2017, 29 (05)
[4]   A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High-Performance Sulfur Electrodes in Lithium-Sulfur Battery [J].
Chen, Wei ;
Lei, Tianyu ;
Qian, Tao ;
Lv, Weiqiang ;
He, Weidong ;
Wu, Chunyang ;
Liu, Xuejun ;
Liu, Jie ;
Chen, Bo ;
Yan, Chenglin ;
Xiong, Jie .
ADVANCED ENERGY MATERIALS, 2018, 8 (12)
[5]   Fe3O4/RGO modified separators to suppress the shuttle effect for advanced lithium-sulfur batteries [J].
Cheng, Pu ;
Guo, Pengqian ;
Liu, Dequan ;
Wang, Yanrong ;
Sun, Kai ;
Zhao, Yonggang ;
He, Deyan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 784 :149-156
[6]   Double-Layered Modified Separators as Shuttle Suppressing Interlayers for Lithium-Sulfur Batteries [J].
Deng, Chao ;
Wang, Zhuowen ;
Wang, Shengping ;
Yu, Jingxian ;
Martin, Darren J. ;
Nanjundan, Ashok Kumar ;
Yamauchi, Yusuke .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (01) :541-549
[7]   Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries [J].
Deng, Ding-Rong ;
Xue, Fei ;
Jia, Yue-Ju ;
Ye, Jian-Chuan ;
Bai, Cheng-Dong ;
Zheng, Ming-Sen ;
Dong, Quan-Feng .
ACS NANO, 2017, 11 (06) :6031-6039
[8]   Yolk-Shelled C@Fe3O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries [J].
He, Jiarui ;
Luo, Liu ;
Chen, Yuanfu ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2017, 29 (34)
[9]   Simultaneously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOF-Based Membrane in Li-S Batteries [J].
He, Yibo ;
Chang, Zhi ;
Wu, Shichao ;
Qiao, Yu ;
Bai, Songyan ;
Jiang, Kezhu ;
He, Ping ;
Zhou, Haoshen .
ADVANCED ENERGY MATERIALS, 2018, 8 (34)
[10]   Cerium Based Metal-Organic Frameworks as an Efficient Separator Coating Catalyzing the Conversion of Polysulfides for High Performance Lithium-Sulfur Batteries [J].
Hong, Xu-Jia ;
Song, Chun-Lei ;
Yang, Yan ;
Tan, Hao-Chong ;
Li, Guo-Hui ;
Cai, Yue-Peng ;
Wang, Hongxia .
ACS NANO, 2019, 13 (02) :1923-1931