Asymptotic controllability implies feedback stabilization

被引:420
作者
Clarke, FH
Ledyaev, YS
Sontag, ED
Subbotin, AI
机构
[1] UNIV MONTREAL,CTR RECH MATH,MONTREAL,PQ H3C 3J7,CANADA
[2] VA STEKLOV MATH INST,MOSCOW 117966,RUSSIA
[3] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
[4] INST MATH & MECH,EKATERINBURG 620219,RUSSIA
基金
加拿大自然科学与工程研究理事会;
关键词
control-Lyapunov functions; feedback; nonsmooth analysis; stabilization;
D O I
10.1109/9.633828
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is shown that every asymptotically controllable system can be globally stabilized by means of some (discontinuous) feedback law. The stabilizing strategy is based on pointwise optimization of a smoothed version of a control-lyapunov function, iteratively sending trajectories into smaller and smaller neighborhoods of a desired equilibrium. A major technical problem, and one of the contributions of the present paper, concerns the precise meaning of ''solution'' when using a discontinuous controller.
引用
收藏
页码:1394 / 1407
页数:14
相关论文
共 30 条
[1]  
[Anonymous], 1989, CBMS NSF REGIONAL C
[2]  
[Anonymous], 1994, J MATH SYSTEMS ESTIM
[3]   STABILIZATION WITH RELAXED CONTROLS [J].
ARTSTEIN, Z .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) :1163-1173
[4]  
Aubin J. P., 1984, Differential inclusions: Set-valued maps and viability theory
[5]  
Brockett R.W., 1983, Differential Geometric Control Theory, V27, P181
[6]  
CLARKE F, IN PRESS SIAM J CONT
[7]   Proximal analysis and minimization principles [J].
Clarke, FH ;
Ledyaev, YS ;
Wolenski, PR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (02) :722-735
[8]  
CLARKE FH, 1994, CRM2386 U MONTR
[9]  
Clarke FH, 1995, J DYN CONTROL SYST, V1, P1, DOI DOI 10.1007/BF02254655
[10]   GLOBAL ASYMPTOTIC STABILIZATION FOR CONTROLLABLE SYSTEMS WITHOUT DRIFT [J].
CORON, JM .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (03) :295-312