Non-Hermitian noncommutative quantum mechanics

被引:9
作者
dos Santos, J. F. G. [1 ]
Luiz, F. S. [2 ]
Duarte, O. S. [2 ]
Moussa, M. H. Y. [2 ]
机构
[1] Univ Fed ABC, BR-09210580 Santo Andre, SP, Brazil
[2] Univ Sao Paulo, Inst Fis Sao Carlos, POB 369, BR-13560970 Sao Carlos, SP, Brazil
关键词
PSEUDO-HERMITICITY; PT-SYMMETRY;
D O I
10.1140/epjp/i2019-12738-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we present a general formalism to treat non-Hermitian and noncommutative Hamiltonians. This is done employing the phase-space formalism of quantum mechanics, which allows to write a set of robust maps connecting the Hamitonians and the associated Wigner functions to the different Hilbert space structures, namely, those describing the non-Hermitian and noncommutative, Hermitian and noncommutative, and Hermitian and commutative systems. A general recipe is provided to obtain the expected values of the more general Hamiltonian. Finally, we apply our method to the harmonic oscillator under linear amplification and discuss the implications of both non-Hermitian and noncommutative effects.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology [J].
Balachandran, Aiyalam P. ;
Ibort, Alberto ;
Marmo, Giuseppe ;
Martone, Mario .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
[2]   Remarks on the noncommutative gravitational quantum well [J].
Banerjee, Rabin ;
Roy, Binayak Dutta ;
Samanta, Saurav .
PHYSICAL REVIEW D, 2006, 74 (04)
[3]   Weyl-Wigner formulation of noncommutative quantum mechanics [J].
Bastos, Catarina ;
Bertolami, Orfeu ;
Dias, Nuno Costa ;
Prata, Joao Nuno .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
[4]   Quantum physics with non-Hermitian operators PREFACE [J].
Bender, Carl ;
Fring, Andreas ;
Guenther, Uwe ;
Jones, Hugh .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
[5]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[6]   Probing phase-space noncommutativity through quantum beating, missing information, and the thermodynamic limit [J].
Bernardini, A. E. ;
Bertolami, O. .
PHYSICAL REVIEW A, 2013, 88 (01)
[7]   Noncommutative gravitational quantum well -: art. no. 025010 [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
PHYSICAL REVIEW D, 2005, 72 (02) :1-9
[8]   Aspects of phase-space noncommutative quantum mechanics [J].
Bertolami, O. ;
Leal, P. .
PHYSICS LETTERS B, 2015, 750 :6-11
[9]   PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard [J].
Bittner, S. ;
Dietz, B. ;
Guenther, U. ;
Harney, H. L. ;
Miski-Oglu, M. ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[10]   Biorthogonal quantum mechanics [J].
Brody, Dorje C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (03)