Predicting Venlafaxine Remission in Late-Life Depression Using Genome-Wide and Clinical Data

被引:0
作者
Marshe, Victoria [1 ]
Maciukiewicz, Malgorzata [1 ]
Hauschild, Anne-Christin [1 ]
Sibille, Etienne [1 ]
Blumberger, Daniel [1 ]
Karp, Jordan [2 ]
Lenze, Eric J. [3 ]
Reynolds, Charles [4 ]
Kennedy, James L. [1 ]
Mulsant, Benoit [1 ]
Mueller, Daniel J. [1 ]
机构
[1] Univ Toronto, Ctr Addict & Mental Hlth, Toronto, ON, Canada
[2] Univ Pittsburgh, Med Ctr, Western Psychiat Inst & Clin, Pittsburgh, PA 15260 USA
[3] Washington Univ, Sch Med, St Louis, MO USA
[4] Univ Pittsburgh, Sch Med, Pittsburgh, PA 15260 USA
关键词
Antidepressant; Venlafaxine; Geriatric Depression; Pharmacogenetics; Machine Learning;
D O I
10.1016/j.biopsych.2019.03.830
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
S79
引用
收藏
页码:S327 / S328
页数:2
相关论文
共 37 条
  • [31] Genome-wide association study of antidepressant treatment resistance in a population-based cohort using health service prescription data and meta-analysis with GENDEP
    Wigmore, Eleanor M.
    Hafferty, Jonathan D.
    Hall, Lynsey S.
    Howard, David M.
    Clarke, Toni-Kim
    Fabbri, Chiara
    Lewis, Cathryn M.
    Uher, Rudolf
    Navrady, Lauren B.
    Adams, Mark J.
    Zeng, Yanni
    Campbell, Archie
    Gibson, Jude
    Thomson, Pippa A.
    Hayward, Caroline
    Smith, Blair H.
    Hocking, Lynne J.
    Padmanabhan, Sandosh
    Deary, Ian J.
    Porteous, David J.
    Mors, Ole
    Mattheisen, Manuel
    Nicodemus, Kristin K.
    McIntosh, Andrew M.
    PHARMACOGENOMICS JOURNAL, 2020, 20 (02) : 329 - 341
  • [32] Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data
    Pivneva, Irina
    Balp, Maria-Magdalena
    Geissbuhler, Yvonne
    Severin, Thomas
    Smeets, Serge
    Signorovitch, James
    Royer, Jimmy
    Liang, Yawen
    Cornwall, Tom
    Pan, Jutong
    Danyliv, Andrii
    McKenna, Sarah Jane
    Marsland, Alexander M.
    Soong, Weily
    DERMATOLOGY AND THERAPY, 2022, 12 (12) : 2747 - 2763
  • [33] Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data
    Irina Pivneva
    Maria-Magdalena Balp
    Yvonne Geissbühler
    Thomas Severin
    Serge Smeets
    James Signorovitch
    Jimmy Royer
    Yawen Liang
    Tom Cornwall
    Jutong Pan
    Andrii Danyliv
    Sarah Jane McKenna
    Alexander M. Marsland
    Weily Soong
    Dermatology and Therapy, 2022, 12 : 2747 - 2763
  • [34] Predicting treatment outcome for anxiety disorders with or without comorbid depression using clinical, imaging and (epi) genetic data
    Deckert, Juergen
    Erhardt, Angelika
    CURRENT OPINION IN PSYCHIATRY, 2019, 32 (01) : 1 - 6
  • [35] White matter integrity and late-life depression in community-dwelling individuals diffusion tensor imaging study using tract-based spatial statistics
    Reppermund, Simone
    Zhuang, Lin
    Wen, Wei
    Slavin, Melissa J.
    Trollor, Julian N.
    Brodaty, Henry
    Sachdev, Perminder S.
    BRITISH JOURNAL OF PSYCHIATRY, 2014, 205 (04) : 315 - 320
  • [36] Estimating dose-response for time to remission with instrumental variable adjustment: the obscuring effects of drug titration in Genome Based Therapeutic Drugs for Depression Trial (GENDEP): clinical trial data
    Hellier, Jennifer
    Emsley, Richard
    Pickles, Andrew
    TRIALS, 2020, 21 (01)
  • [37] Prediction and validation of protein-protein interactors from genome-wide DNA-binding data using a knowledge-based machine-learning approach
    Waardenberg, Ashley J.
    Homan, Bernou
    Mohamed, Stephanie
    Harvey, Richard P.
    Bouveret, Romaric
    OPEN BIOLOGY, 2016, 6 (09)