NET ENERGY ANALYSIS FOR CONCENTRATED SOLAR POWER PLANTS IN CHILE

被引:0
作者
Escobar, Rodrigo [1 ]
Larrain, Teresita [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Ingn Mecan & Met, Santiago, Chile
来源
IMECE 2008: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2008, VOL 8 | 2009年
关键词
DIRECT STEAM-GENERATION; PARABOLIC TROUGHS; DISS PROJECT; SYSTEMS; TECHNOLOGIES; PERFORMANCE; COLLECTORS; IMPACT;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Chilean Energy Policy calls for 15 percent of new power generation capacity to come from renewable energy Sources from 2006 to 2010, and then a 5% of electric energy generated from renewable energy sources with gradual increases in order to reach 10% by 2024. Concentrated solar power is an interesting alternative to help achieving those objectives, as it is estimated that northern Chile has high radiation levels, coupled with high values of the local clearness index and availability of flat terrain. The present report investigates the net energy attributes of parabolic trough plants installed in the Atacama Desert. Monthly means of solar radiation are used in order to estimate the solar fraction for a 100 MW plant at three different locations. Our analysis considers three cases: operation during sunlight hours only, with and without fossil fuel back-up, and continuous operation during 24 hours a day. The net energy analysis for concentrated solar power (CSP) plants is then performed, considering the energy costs of manufacturing, transport, installation, operation and decommissioning. The results indicate that the CSP plants are a net energy source when operating in sunlight-only mode and that the energy payback time is a linear function of the total operation time when utilizing fossil fuel back-up. In the continuous operation mode, the CSP plants become fossil fuel plants with solar assistance, and therefore all locations display negative net energy. Based on this result, the back-Lip fraction required for the plants to be net energy sources is estimated from the EROEI as function of the back-up fraction. It is estimated that the net energy analysis is a useful tool for determining under which conditions a CSP plant becomes a net energy Source, and thus can be utilized in order to define geographical locations and operation conditions where they can be considered renewable energy sources.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 50 条
  • [11] Modeling and analysis of process configurations for hybrid concentrated solar power and conventional steam power plants
    Suojanen, Suvi
    Hakkarainen, Elina
    Tahtinen, Matti
    Sihvonen, Teemu
    ENERGY CONVERSION AND MANAGEMENT, 2017, 134 : 327 - 339
  • [12] MXene-enhanced nanofluids for superior thermal energy storage in concentrated solar power plants
    Pineda, Fabiola
    Zambrano, Dario F.
    Lasanta, Maria Isabel
    Guzman, Danny
    Angel, Alejandro
    Palay, Francisco
    Rios, Paulina
    Gonzalez, Rafael I.
    Ramirez, Max
    Rogan, Jose
    Valdivia, Juan Alejandro
    Perez, Francisco Javier
    Rosenkranz, Andreas
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 283
  • [13] Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation
    Knudsen, Thomas
    Clausen, Lasse Rongaard
    Haglind, Fredrik
    Modi, Anish
    2013 ISES SOLAR WORLD CONGRESS, 2014, 57 : 361 - 370
  • [14] Simplified mathematical model and experimental analysis of latent thermal energy storage for concentrated solar power plants
    Mehmood, Tariq
    Shah, Najam ul Hassan
    Ali, Muzaffar
    Biwole, Pascal Henry
    Sheikh, Nadeem Ahmed
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [15] A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants
    Fasquelle, T.
    Falcoz, Q.
    Neveu, P.
    Hoffmann, J. -F.
    APPLIED ENERGY, 2018, 212 : 1153 - 1164
  • [16] Power cycles integration in concentrated solar power plants with energy storage based on calcium looping
    Ortiz, C.
    Chacartegui, R.
    Valverde, J. M.
    Alovisio, A.
    Becerra, J. A.
    ENERGY CONVERSION AND MANAGEMENT, 2017, 149 : 815 - 829
  • [17] Potential Map for the Installation of Concentrated Solar Power Towers in Chile
    Hernandez, Catalina
    Barraza, Rodrigo
    Saez, Alejandro
    Ibarra, Mercedes
    Estay, Danilo
    ENERGIES, 2020, 13 (09)
  • [18] Numerical analysis of demolition waste-based thermal energy storage system for concentrated solar power plants
    Kocak, Burcu
    Paksoy, Halime
    ENERGY STORAGE, 2024, 6 (01)
  • [19] Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions
    Tiwari, Vivek
    Rai, Aakash C.
    Srinivasan, P.
    RENEWABLE ENERGY, 2021, 174 : 305 - 319
  • [20] Parametric Study and Sensitivity Analysis of Latent Heat Thermal Energy Storage System in Concentrated Solar Power Plants
    Chirino, Hermes
    Xu, Ben
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (02):