Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study

被引:121
作者
Rudyanto, Rina D. [1 ]
Kerkstra, Sjoerd [2 ]
van Rilowort, Eva M. [2 ]
Fetita, Catalin [3 ]
Brillet, Pierre-Yves [3 ]
Lefevre, Christophe [3 ]
Xue, Wenzhe [4 ]
Zhu, Xiangjun [4 ]
Liang, Jianming [4 ]
Oksuz, Ilkay [5 ]
Unay, Devrim [5 ]
Kadipasoglu, Kamuran [5 ]
Estepar, Raul San Jose [6 ]
Ross, James C. [6 ]
Washko, George R. [6 ]
Prieto, Juan-Carlos [7 ]
Hernandez Hoyos, Marcela [8 ]
Orkisz, Maciej [7 ]
Meine, Hans [9 ]
Huellebrand, Markus [9 ]
Stoecker, Christina [9 ]
Mir, Fernando Lopez
Naranjo, Valery
Villanueva, Eliseo
Staring, Marius [10 ]
Xiao, Changyan [11 ]
Stoel, Berend C. [10 ]
Fabijanska, Anna [12 ]
Smistad, Erik [13 ]
Elster, Anne C. [13 ]
Lindseth, Frank [13 ]
Foruzan, Amir Hossein [14 ]
Kiros, Ryan [15 ]
Popuri, Karteek [15 ]
Cobzas, Dana [15 ]
Jimenez-Carretero, Daniel [16 ,17 ]
Santos, Andres [16 ,17 ]
Ledesma-Carbayo, Maria J. [16 ,17 ]
Helmberger, Michael [18 ]
Urschler, Martin [19 ]
Pienn, Michael [20 ]
Bosboom, Dennis G. H. [2 ]
Campo, Arantza [21 ]
Prokop, Mathias [2 ]
de Jong, Pim A. [22 ]
Ortiz-de-Solorzano, Carlos [1 ]
Munoz-Barrutia, Arrate [1 ]
van Ginneken, Bram [2 ]
机构
[1] Univ Navarra, Ctr Appl Med Res, E-31080 Pamplona, Spain
[2] Radboud Univ Nijmegen, Med Ctr, Diagnost Image Anal Grp, NL-6525 ED Nijmegen, Netherlands
[3] Inst SudParis Telecom, Paris, France
[4] Arizona State Univ, Tempe, AZ 85287 USA
[5] Bahcesehir Univ, Istanbul, Turkey
[6] Brigham & Womens Hosp, Boston, MA 02115 USA
[7] Univ Lyon, CREATIS, Lyon, France
[8] Univ Los Andes, Bogota, Colombia
[9] Fraunhofer MEVIS, Bremen, Germany
[10] Leiden Univ, Med Ctr, Div Image Proc LKEB, NL-2300 RA Leiden, Netherlands
[11] Hunan Univ, Changsha, Hunan, Peoples R China
[12] Lodz Univ Technol, Inst Appl Comp Sci, Lodz, Poland
[13] Norwegian Univ Sci & Technol, Oslo, Norway
[14] Shahed Univ, Tehran, Iran
[15] Univ Alberta, Edmonton, AB T6G 2M7, Canada
[16] Univ Politecn Madrid, E-28040 Madrid, Spain
[17] CIBER BBN, Zaragoza, Spain
[18] Graz Univ Technol, Inst Comp Vis & Graph, A-8010 Graz, Austria
[19] Ludwig Boltzmann Inst Clin Forens Imaging, Graz, Austria
[20] Ludwig Boltzmann Inst Lung Vasc Res, Graz, Austria
[21] Univ Navarra, Univ Navarra Clin, Dept Pulm, E-31080 Pamplona, Spain
[22] Univ Med Ctr, Dept Radiol, Utrecht, Netherlands
关键词
Thoracic computed tomography; Lung vessels; Algorithm comparison; Segmentation; Challenge; ARTERY-VEIN SEPARATION; CURVILINEAR STRUCTURES; PULMONARY-EMBOLISM; AIDED DETECTION; CT; EXTRACTION; TREE; ENHANCEMENT; FILTER; QUANTIFICATION;
D O I
10.1016/j.media.2014.07.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1217 / 1232
页数:16
相关论文
共 65 条
[1]   Vessel tree reconstruction in thoracic CT scans with application to nodule detection [J].
Agam, G ;
Armato, SG ;
Wu, CH .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (04) :486-499
[2]   A new improved version of the realistic digital brain phantom [J].
Aubert-Broche, Berengere ;
Evans, Alan C. ;
Collins, Louis .
NEUROIMAGE, 2006, 32 (01) :138-145
[3]   Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction [J].
Aylward, SR ;
Bullitt, E .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (02) :61-75
[4]   Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts [J].
Bauer, Christian ;
Pock, Thomas ;
Sorantin, Erich ;
Bischof, Horst ;
Beichel, Reinhard .
MEDICAL IMAGE ANALYSIS, 2010, 14 (02) :172-184
[5]   Automatic extraction of the pulmonary artery tree from multi-slice CT data [J].
Bülow, T ;
Wiemker, R ;
Blaffert, T ;
Lorenz, C ;
Renisch, S .
MEDICAL IMAGING 2005: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES, PTS 1 AND 2, 2005, 5746 :730-740
[6]  
Coates Adam, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P561, DOI 10.1007/978-3-642-35289-8_30
[7]   Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest [J].
de Torres, Juan P. ;
Bastarrika, Gorka ;
Wisnivesky, Juan P. ;
Alcaide, Ana B. ;
Campo, Arantza ;
Seijo, Luis M. ;
Pueyo, Jesus C. ;
Villanueva, Alberto ;
Lozano, Maria D. ;
Montes, Usua ;
Montuenga, Luis ;
Zulueta, Javier J. .
CHEST, 2007, 132 (06) :1932-1938
[8]  
Estépar RSJ, 2012, 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), P1479, DOI 10.1109/ISBI.2012.6235851
[9]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[10]  
Fetita C., 2009, MED IMAGING 2009 IMA