Microstructure and corrosion characteristics of CrCuFeMoNi HEA coatings with different compositions in high-temperature and high-pressure water

被引:17
作者
Chen, Q. S. [1 ]
Liu, C. H. [1 ]
Long, J. P. [1 ]
Wang, J. [1 ]
Zhang, R. Q. [2 ]
Yang, H. Y. [2 ]
Zhang, W. [3 ,4 ]
Yao, F. Y. [1 ]
Zhao, S. [1 ]
Zhang, Q. [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[2] Nucl Power Inst China, Lab Sci & Technol Reactor Fuel & Mat, Chengdu 610041, Sichuan, Peoples R China
[3] Sichuan Univ, Inst Nucl Sci & Technol, Key Lab Radiat Phys & Technol, Minist Educ, Chengdu 610064, Sichuan, Peoples R China
[4] Sichuan Univ Sci & Engn, Analyt & Testing Ctr, Zigong 643000, Peoples R China
基金
中国国家自然科学基金;
关键词
magnetron sputtering; HEA coating; accident-tolerant fuel (ATF); corrosion resistance; HIGH-ENTROPY ALLOYS; OXIDATION RESISTANCE; BEHAVIOR; IRRADIATION;
D O I
10.1088/2053-1591/ab19ed
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface modification technology consists of a coating technique is one important method to improve the operational performance of nuclear fuel cladding. In this paper, different compositions of a CrCuFeMoNi high-entropy alloy (HEA) coating were deposited on a Zr-4 substrate by magnetron cosputtering. The microstructures, mechanical properties and high-temperature corrosion behaviors of the CrCuFeMoNi HEA coatings were investigated. All as-deposited HEAcoatings have an fcc structure and are well adhered to the Zr-4 substrate. The nanoindentation and autoclave test results showed that the as-deposited Cr(0.26)Cu(0.3)Fe(0.1)Mo(0.15)Ni(0.19)HEA coating had superior hardness (12.5 GPa) and high-temperature corrosion resistance relative to others. The corrosion mechanisms of the CrCuFeMoNi HEA coatings with different compositions are also discussed.
引用
收藏
页数:10
相关论文
共 43 条
[1]  
[Anonymous], 2002, 0204 PSI
[2]  
Barin I., 1995, THERMOCHEMICAL DATA, P405
[3]  
Barrett K., 2012, ADV LWR NUCL FUEL CL, P1, DOI [10.2172/1057698, DOI 10.2172/1057698]
[4]  
Buluc Gheorghe, 2017, Advanced Materials Research, V1143, P3, DOI 10.4028/www.scientific.net/AMR.1143.3
[5]   A review on fundamental of high entropy alloys with promising high-temperature properties [J].
Chen, Jian ;
Zhou, Xueyang ;
Wang, Weili ;
Liu, Bing ;
Lv, Yukun ;
Yang, Wei ;
Xu, Dapeng ;
Liu, Yong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 760 :15-30
[6]   Fatigue behavior of high-entropy alloys: A review [J].
Chen PeiYong ;
Lee, Chanho ;
Wang Shao-Yu ;
Seifi, Mohsen ;
Lewandowski, John J. ;
Dahmen, Karin A. ;
Jia HaoLing ;
Xie Xie ;
Chen BiLin ;
Yeh Jien-Wei ;
Tsai Che-Wei ;
Yuan Tao ;
Liaw, Peter K. .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (02) :168-178
[7]   CHROMIUM-BASED OXIDATION-RESISTANT COATINGS FOR THE PROTECTION OF ENGINE VALVES IN AUTOMOTIVE VEHICLES [J].
Drozdz, Monika ;
Kyziol, Karol ;
Grzesik, Zbigniew .
MATERIALI IN TEHNOLOGIJE, 2017, 51 (04) :603-607
[8]   Current status of materials development of nuclear fuel cladding tubes for light water reactors [J].
Duan, Zhengang ;
Yang, Huilong ;
Satoh, Yuhki ;
Murakami, Kenta ;
Kano, Sho ;
Zhao, Zishou ;
Shen, Jingjie ;
Abe, Hiroaki .
NUCLEAR ENGINEERING AND DESIGN, 2017, 316 :131-150
[9]   Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multi-elements alloy thin films [J].
Feng, Xingguo ;
Tang, Guangze ;
Sun, Mingren ;
Ma, Xinxin ;
Wang, Liqing ;
Yukimura, Ken .
SURFACE & COATINGS TECHNOLOGY, 2013, 228 :S424-S427
[10]   Materials selection considerations for high entropy alloys [J].
Fu, X. ;
Schuh, C. A. ;
Olivetti, E. A. .
SCRIPTA MATERIALIA, 2017, 138 :145-150