High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm

被引:45
作者
Wang, Chong [1 ]
Zhan, Yang [1 ]
Wu, Lingxia [1 ]
Li, Yuanyuan [2 ]
Liu, Jinping [1 ]
机构
[1] Cent China Normal Univ, Dept Phys, Inst Nanosci & Nanotechnol, Wuhan 430079, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
MnO2-polypyrrole; symmetric supercapacitors; high voltage; high rate; charge storage; HIGH-PERFORMANCE; HIGH-POWER; FLEXIBLE SUPERCAPACITORS; MNO2; NANOSTRUCTURES; ARRAYS; GRAPHENE/MNO2; ELECTRODES; CAPACITORS; NANOWIRES;
D O I
10.1088/0957-4484/25/30/305401
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A manganese oxide (MnO2) nanosheet film, hybridized with a conducting polymer polypyrrole (PPy), was prepared through the direct reaction of a carbon cloth with potassium permanganate (KMnO4) and through the subsequent chemical polymerization; this type of prepared nanosheet has been used as an electrode for symmetric supercapacitors. The influence of the reaction time in the KMnO4 solution on the capacitive property of the MnO2 film was systematically investigated. Further experimentation revealed that the PPy with the high electrical conductivity had promoted the charge transfer in the MnO2 nanofilm and had played an important role in enhancing the electrode performance (similar to 45.6 mF cm(-2)). An areal capacitance of 25.9 mF cm(-2) and an excellent rate performance (similar to 50.08% of the initial capacitance when the scan rate increases 100 times from 2.5 to 250 mV s(-1)) can be achieved for an aqueous symmetric supercapacitor that is assembled from the MnO2-PPy nanofilm. In particular, an operating voltage of 1.2 V can be delivered by choosing an appropriate electrolyte; this voltage level is much larger than that of traditional aqueous symmetric supercapacitors (<= 1.0 V) and contributes to a high energy density (similar to 3.5 mu Wh cm(-2)). Under such a high output voltage, the device can still maintain similar to 86.21% of the initial capacitance, even after 2000 cycles.
引用
收藏
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   1.2 Volt manganese oxide symmetric supercapacitor [J].
Ataherian, Fatemeh ;
Wu, Nae-Lih .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (11) :1264-1267
[3]   Towards Textile Energy Storage from Cotton T-Shirts [J].
Bao, Lihong ;
Li, Xiaodong .
ADVANCED MATERIALS, 2012, 24 (24) :3246-3252
[4]   Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes [J].
Bao, Lihong ;
Zang, Jianfeng ;
Li, Xiaodong .
NANO LETTERS, 2011, 11 (03) :1215-1220
[5]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[6]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[7]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[8]   Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode [J].
Chen, Ying-Chu ;
Hsu, Yu-Kuei ;
Lin, Yan-Gu ;
Lin, Yu-Kai ;
Horng, Ying-Ying ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
ELECTROCHIMICA ACTA, 2011, 56 (20) :7124-7130
[9]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[10]   Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes [J].
He, Yongmin ;
Chen, Wanjun ;
Li, Xiaodong ;
Zhang, Zhenxing ;
Fu, Jiecai ;
Zhao, Changhui ;
Xie, Erqing .
ACS NANO, 2013, 7 (01) :174-182