A New Construction of Perfect Nonlinear Functions Using Galois Rings

被引:5
作者
Feng, Tao [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
perfect nonlinear function; relative difference set; Galois ring; RELATIVE DIFFERENCE SETS;
D O I
10.1002/jcd.20213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime p, we give a construction of perfect nonlinear functions from Z(p2)(n) to Z(p2) when either of the following conditions holds: (1) n >= p; (2) nip, and n is a composite number or is the sum of positive composite numbers. It follows that when n >= 12, there is a perfect nonlinear function from Z(p2)(n) to Z(p2) for any prime p. (C) 2009 Wiley Periodicals, Inc. J Combin Designs 17: 229-239, 2009
引用
收藏
页码:229 / 239
页数:11
相关论文
共 15 条
[1]  
Beth T., 1986, Design Theory
[2]   Highly nonlinear mappings [J].
Carlet, C ;
Ding, CS .
JOURNAL OF COMPLEXITY, 2004, 20 (2-3) :205-244
[3]  
CARLET C, 2000, P 5 INT C FIN FIELDS, P81
[4]  
Chen YQ, 1996, J COMB THEORY A, V76, P179
[5]  
Dillon J., 1987, Proclus lectuer et interprete des Anciens, P165
[6]  
Hou X.-D., 1998, Finite Fields and their Applications, V4, P55, DOI 10.1006/ffta.1997.0200
[7]  
JACOBSON N, 1980, ALGEBRA, V2
[8]   CONSTRUCTIONS OF PARTIAL DIFFERENCE SETS AND RELATIVE DIFFERENCE SETS ON P-GROUPS [J].
LEUNG, KH ;
MA, SL .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :533-539
[9]   Relative (pa, pb, pa, pa-b)-difference sets:: A unified exponent bound and a local ring construction [J].
Ma, SL ;
Schmidt, B .
FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (01) :1-22
[10]  
McDonald BR., 1974, FINITE RINGS IDENTIT