Let P-n(c(1),c(2),...,c(n-1)) = {p(z) : p(z) is analytic in \z\ < 1 with Rep(z) > 0 and p(z) = 1 + c(1)z + c(2)z(2) +...+ c(n-1)z(n-1) + d(n)z(n) +..., where c(1),c(2),...,c(n-1) are fixed complex constants}. Let P-R,P-n(b(1),b(2),...,b(n-1)) = {p(z) : p(z) is analytic in \z\ < 1 with Rep(z) > 0 and p(z) = 1 + b(1)z + b(2)z(2) +...+ b(n-1)z(n-1) + d(n)z(n) +..., where b(1),b(2),...,b(n-1) are fixed real constants and the coefficients of p(z) are real}. Let T-n(l(1),l(2),...,l(n-1)) = {f(z) : f(z) is analytic in \z\ < 1 and f(z) = z + l(1)z(2) + l(2)z(3) +...+ l(n-1)z(n) + d(n)z(n+1) +...; where l(1),l(2),...,l(n-1) are fixed real constants and the coefficients of f(z) are real}. It is understood that P-n(c(1),c(2),...,c(n-1)), P-R,P-n(b(1),b(2),...,b(n-1)) and T-n(l(1),l(2),...,l(n-1)) are not empty when the constants c(k)(k = 1,...,n-1), b(k)(k = 1,2,...,n-1) and l(k)(k = 1,...,n-1) satisfy certain conditions. This paper obtaines the extreme points of P-n(c(1),...,c(n-1)), P-R,P-n(b(1),...,b(n-1)) and T-n(l(1),...,l(n-1)).