Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study

被引:61
作者
Kahlaoui, Radhouene [1 ]
Arbi, Kamel [2 ,3 ]
Sobrados, Isabel [2 ]
Jimenez, Ricardo [2 ]
Sanz, Jesus [2 ]
Ternane, Riadh [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Lab Applicat Chim Ressources & Subst Nat & Enviro, Zarzouna 7021, Bizerte, Tunisia
[2] CSIC, ICMM, Madrid 28049, Spain
[3] Delft Univ Technol, Fac Civil Engn & Geosci, Dept Mat & Environm, Microlab, Delft, Netherlands
关键词
SOLID ELECTROLYTES; NEUTRON-DIFFRACTION; IONIC-CONDUCTIVITY; MAS NMR; CONDUCTORS; TRANSITION; NUCLEAR; NA;
D O I
10.1021/acs.inorgchem.6b02274
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Rhombohedral NASICON compounds with general formula Li1+xTi2-xScx(PO4)(3) (0 <= x <= 0.5) have been prepared using a conventional solid-state reaction and characterized by X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and impedance spectroscopy. The partial substitution of Ti4+ by Sc3+ and Li+ in pristine LiTi2(PO4)(3) increases unit-cell dimensions and the number of charge carriers. In Sc-rich samples, the analysis of XRD data and Li-6/Li-7, P-31, and Sc-45 MAS NMR spectra confirms the presence of secondary LiScO2 and LiScP2O7 phases that reduce the amount of lithium incorporated in the NASICON phase. In samples with x < 0.3, electrostatic repulsions between Li ions located at M1 and M3 sites increase Li mobility. For x >= 0.3, ionic conductivity decreases because of secondary nonconducting phases formed at grain boundaries of the NASICON particles (core-shell structures). For x = 0.2, high bulk conductivity (2.5 x 10(-3) S.cm(-1)) and low activation energy (E-a = 0.25 eV) measured at room temperature make Li1.2Ti1.8Sc0.2(PO4)(3) one of the best lithium ionic conductors reported in the literature. In this material, the vacancy arrangement enhances Li conductivity.
引用
收藏
页码:1216 / 1224
页数:9
相关论文
共 50 条
[41]   Structural and electrical study of the alluaudites (Ag1-xNax)2FeMn2(PO4)3 (x=0, 0.5 and 1) [J].
Daidouh, A ;
Durio, C ;
Pico, C ;
Veiga, ML ;
Chouaibi, N ;
Ouassini, A .
SOLID STATE SCIENCES, 2002, 4 (04) :541-548
[42]   New Na1+xGe2(SiO4)x(PO4)3-x NASICON Series with Improved Grain and Grain Boundary Conductivities [J].
Ortiz-Mosquera, Jairo F. ;
Nieto-Munoz, Adriana M. ;
Rodrigues, Ana C. M. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (12) :13914-13922
[43]   Synthesis and Properties of NASICON-type Li1+xErxZr2-x(PO4)3 (0.1≤x≤0.2) Solid Electrolyte [J].
Liu Meijing ;
Wei Hongkang ;
Wang Chang'an .
RARE METAL MATERIALS AND ENGINEERING, 2015, 44 :113-115
[44]   Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2-x(PO4)3 [J].
Lakshmanan, Agnes ;
Gurusamy, Ramkumar ;
Venkatachalam, Sabarinathan .
IONICS, 2023, 29 (12) :5123-5138
[45]   Electrochemical performance of the lithium insertion in Mn0.5-xCoxTi2(PO4)3/C composites (x=0, 0.25, and 0.5) as electrode material for lithium batteries [J].
Vidal-Abarca, C. ;
Lavela, P. ;
Ortiz, G. ;
Tirado, J. L. .
ELECTROCHIMICA ACTA, 2012, 77 :150-156
[46]   Effects of Li Confined Motion on NMR Quadrupolar Interactions: A Combined 7Li NMR and DFT-MD Study of LiR2(PO4)3 (R=Ti or Zr) Phases [J].
Diez-Gomez, Virginia ;
de Andres, Pedro L. ;
Sanz, Jesus .
CHEMSUSCHEM, 2020, 13 (05) :1027-1036
[47]   Synthesis and ionic conductivity of (NH4)1–xHxHf2(PO4)3 (x = 0–1) NASICON-type materials [J].
M. A. Moshareva ;
S. A. Novikova ;
A. B. Yaroslavtsev .
Inorganic Materials, 2016, 52 :1283-1290
[48]   A new NASICON lithium ion-conducting glass-ceramic of the Li1+xCrx(GeyTi1 - y)2 - x(PO4)3 system [J].
Nuernberg, Rafael Bianchini ;
Martins Rodrigues, Ana Candida .
SOLID STATE IONICS, 2017, 301 :1-9
[49]   Preparation, characterization and conductivity of NASICON-type Li1+xM(III)xTi2-x(PO4)3 (M(III) = Al, Cr, Fe; 0.5 ≤ x ≤ 2.0) materials via modern, scalable synthesis routes [J].
Rossbach, A. ;
Neitzel-Grieshammer, S. .
OPEN CERAMICS, 2022, 9
[50]   The influence of iron substitution on the electrochemical properties of Li1+xTi2-xFex(PO4)3/C composites as electrodes for lithium batteries [J].
Vidal-Abarca, C. ;
Lavela, P. ;
Aragon, M. J. ;
Plylahan, N. ;
Tirado, J. L. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (40) :21602-21607