Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study

被引:61
作者
Kahlaoui, Radhouene [1 ]
Arbi, Kamel [2 ,3 ]
Sobrados, Isabel [2 ]
Jimenez, Ricardo [2 ]
Sanz, Jesus [2 ]
Ternane, Riadh [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Lab Applicat Chim Ressources & Subst Nat & Enviro, Zarzouna 7021, Bizerte, Tunisia
[2] CSIC, ICMM, Madrid 28049, Spain
[3] Delft Univ Technol, Fac Civil Engn & Geosci, Dept Mat & Environm, Microlab, Delft, Netherlands
关键词
SOLID ELECTROLYTES; NEUTRON-DIFFRACTION; IONIC-CONDUCTIVITY; MAS NMR; CONDUCTORS; TRANSITION; NUCLEAR; NA;
D O I
10.1021/acs.inorgchem.6b02274
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Rhombohedral NASICON compounds with general formula Li1+xTi2-xScx(PO4)(3) (0 <= x <= 0.5) have been prepared using a conventional solid-state reaction and characterized by X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and impedance spectroscopy. The partial substitution of Ti4+ by Sc3+ and Li+ in pristine LiTi2(PO4)(3) increases unit-cell dimensions and the number of charge carriers. In Sc-rich samples, the analysis of XRD data and Li-6/Li-7, P-31, and Sc-45 MAS NMR spectra confirms the presence of secondary LiScO2 and LiScP2O7 phases that reduce the amount of lithium incorporated in the NASICON phase. In samples with x < 0.3, electrostatic repulsions between Li ions located at M1 and M3 sites increase Li mobility. For x >= 0.3, ionic conductivity decreases because of secondary nonconducting phases formed at grain boundaries of the NASICON particles (core-shell structures). For x = 0.2, high bulk conductivity (2.5 x 10(-3) S.cm(-1)) and low activation energy (E-a = 0.25 eV) measured at room temperature make Li1.2Ti1.8Sc0.2(PO4)(3) one of the best lithium ionic conductors reported in the literature. In this material, the vacancy arrangement enhances Li conductivity.
引用
收藏
页码:1216 / 1224
页数:9
相关论文
共 50 条
[31]   Phase transformations and cation mobility in Li3-2x Nb x In2-x (PO4)3 complex phosphates [J].
Shaikhlislamova, A. R. ;
Stenina, I. A. ;
Zhuravlev, N. A. ;
Arkhangel'skii, I. V. ;
Rebrov, A. I. ;
Yaroslavtsev, A. B. .
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2009, 54 (04) :500-504
[32]   Phase transitions and ion transport in NASICON materials of composition Li1+x Zr2-x In x (PO4)3(x=0-1) [J].
Safronov, D. V. ;
Stenina, I. A. ;
Maksimychev, A. V. ;
Shestakov, S. L. ;
Yaroslavtsev, A. B. .
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2009, 54 (11) :1697-1703
[33]   Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li1+xAlxGe2 - x(PO4)3 [J].
Liu, Zhongqing ;
Venkatachalam, Sabarinathan ;
Kirchhain, Holger ;
van Wuellen, Leo .
SOLID STATE IONICS, 2016, 295 :32-40
[34]   Structure and ion transport of lithium-rich Li1+xAlxTi2-x(PO4)3 with 0.3 &lt; x &lt; 0.5: A combined computational and experimental study [J].
Case, David ;
McSloya, Adam J. ;
Sharpe, Ryan ;
Yeandel, Stephen R. ;
Bartlett, Thomas ;
Cookson, James ;
Dashjav, Enkhtsetseg ;
Tietz, Frank ;
Kumarb, C. M. Naveen ;
Goddard, Pooja .
SOLID STATE IONICS, 2020, 346
[35]   Structure and lithium-ion mobility in Li1.5M0.5Ge1.5(PO4)3 (M = Ga, Sc, Y) NASICON glass-ceramics [J].
Almeida Silva, Igor d'Anciaes ;
Nieto-Munoz, Adriana M. ;
Rodrigues, Ana Candida M. ;
Eckert, Hellmut .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (07) :4002-4012
[36]   A systematic study of Nasicon-type Lii + XMXTi2 _ x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy [J].
Perez-Estebanez, M. ;
Isasi-Marin, J. ;
Toebbens, D. M. ;
Rivera-Calzada, A. ;
Leon, C. .
SOLID STATE IONICS, 2014, 266 :1-8
[37]   Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3 NASICON glass-ceramics [J].
Narvaez-Semanate, J. L. ;
Rodrigues, A. C. M. .
SOLID STATE IONICS, 2010, 181 (25-26) :1197-1204
[38]   Progress and perspective of Li1+ xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries [J].
Yang, Ke ;
Chen, Likun ;
Ma, Jiabin ;
He, Yan-Bing ;
Kang, Feiyu .
INFOMAT, 2021, 3 (11) :1195-1217
[39]   The NASICON solid solution Li1-x La x /3Zr2(PO4)3: optimization of the sintering process and ionic conductivity measurements [J].
Barre, M. ;
Le Berre, F. ;
Crosnier-Lopez, M-P. ;
Galven, C. ;
Bohnke, O. ;
Fourquet, J-L. .
IONICS, 2009, 15 (06) :681-687
[40]   Synthesis and ionic conductivity of (NH4)1-x H x Hf2(PO4)3 (x=0-1) NASICON-type materials [J].
Moshareva, M. A. ;
Novikova, S. A. ;
Yaroslavtsev, A. B. .
INORGANIC MATERIALS, 2016, 52 (12) :1283-1290