3D Orientation and Object Classification from Partial Model Point Cloud based on PointNet

被引:0
|
作者
Tuan Anh Nguyen [1 ]
Lee, Sukhan [1 ]
机构
[1] Sungkyunkwan Univ, Inst Elect & Comp Engn, Intelligent Syst Res, Suwon 2066, South Korea
来源
2018 IEEE THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS) | 2018年
关键词
3D Orientation Estimation; 3D Object Recognition; PointNet; Deep Learning;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a deep network based on PointNet to estimate the orientations and predict the object classes of 3D oriented objects using their partial model point clouds. More specific, our network exploits the advantages of PointNet to extract the global features of two kinds of point cloud: 1) 3D partial model orientation point cloud which is a part of a 3D object in an observed orientation and 2) full object model point cloud of the 3D object in the reference orientation which is referred to specify the orientations. We then associate the partial model point cloud global features with the corresponding reference global features by an association subnetwork, in which the association network takes the partial model global features as the input and output the corresponding reference feature reconstruction. We use this global feature reconstruction as aligned global features to infer the object classes of the partial model point cloud. To predict the orientation of an oriented point cloud from its partial model point cloud, we use the concatenation of partial model global features and the reference feature reconstruction as an optimal orientation features for network learning with orientation targets. Using the orientation dataset with partial model point clouds based on 3D ModelNet, our experiments have shown the better object classification performance comparing to the vanilla PointNet and the robustness of our proposed network in orientation estimation.
引用
收藏
页码:192 / 197
页数:6
相关论文
共 50 条
  • [1] Influence of Preprocessing and Augmentation on 3D Point Cloud Classification Based on a Deep Neural Network: PointNet
    Seo, Hogeon
    Joo, Sungmoon
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 895 - 899
  • [2] Characteristic Analysis of Data Preprocessing for 3D Point Cloud Classification Based on a Deep Neural Network: PointNet
    Seo, Hogeon
    Joo, Sungmoon
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2021, 41 (01) : 19 - 24
  • [3] Training PointNet for Human Point Cloud Segmentation with 3D Meshes
    Ueshima, Takuma
    Hotta, Katsuya
    Tokai, Shogo
    Zhang, Chao
    FIFTEENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2021, 11794
  • [4] 3D Point Cloud Classification and Segmentation Model Based on Graph Convolutional Network
    Hou Xiangdan
    Yu Xixin
    Liu Hongpu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (18)
  • [5] 3D point cloud object detection algorithm based on Transformer
    Liu M.
    Yang Q.
    Hu G.
    Guo Y.
    Zhang J.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2023, 41 (06): : 1190 - 1197
  • [6] 3D object detection based on point cloud in automatic driving scene
    Hai-Sheng Li
    Yan-Ling Lu
    Multimedia Tools and Applications, 2024, 83 : 13029 - 13044
  • [7] 3D object detection based on point cloud in automatic driving scene
    Li, Hai-Sheng
    Lu, Yan-Ling
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 13029 - 13044
  • [8] Lightweight 3D Point Cloud Classification Network
    Xin, Zihao
    Wang, Hongyuan
    Zhang, Ji
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II, 2022, 1701 : 95 - 105
  • [9] Deep 3D point cloud classification and segmentation network based on GateNet
    Liu, Hui
    Tian, Shuaihua
    VISUAL COMPUTER, 2024, 40 (02): : 971 - 981
  • [10] Deep 3D point cloud classification and segmentation network based on GateNet
    Hui Liu
    Shuaihua Tian
    The Visual Computer, 2024, 40 (2) : 971 - 981