Markov-type inequalities for polynomials with restricted zeros

被引:2
|
作者
Halász, G [1 ]
机构
[1] Eotvos Lorand Univ, Dept Anal, Budapest, Hungary
[2] Hungarian Acad Sci, Inst Math, Budapest, Hungary
关键词
polynomials; Markov inequalities; harmonic and subharmonic functions;
D O I
10.1006/jath.1999.3363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Upper bounds of the exact order of magnitude in n are given for max(-1 less than or equal to x less than or equal to 1)\p'(x)\/max(-1 less than or equal to x less than or equal to 1)\p(x)\ for polynomials p of degree n, free of zeros in certain regions containing the interval (-1, 1). (C) 1999 Academic Press.
引用
收藏
页码:148 / 155
页数:8
相关论文
共 50 条
  • [31] Some Integral Inequalities for Polynomials With Restricted Zeros
    Mir, Abdullah
    Dewan, K. K.
    Singh, Naresh
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (01) : 83 - 92
  • [32] Lp INEQUALITIES FOR THE GROWTH OF POLYNOMIALS WITH RESTRICTED ZEROS
    Rather, Nisar A.
    Gulzar, Suhail
    Bhat, Aijaz A.
    ARCHIVUM MATHEMATICUM, 2022, 58 (03): : 159 - 167
  • [33] A MARKOV-TYPE INEQUALITY FOR THE DERIVATIVES OF CONSTRAINED POLYNOMIALS
    ERDELYI, T
    JOURNAL OF APPROXIMATION THEORY, 1990, 63 (03) : 321 - 334
  • [34] Markov Inequalities for Polynomials with Restricted Coefficients
    Feilong Cao
    Shaobo Lin
    Journal of Inequalities and Applications, 2009
  • [35] Markov Inequalities for Polynomials with Restricted Coefficients
    Cao, Feilong
    Lin, Shaobo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [36] Markov- and Bernstein-Type Inequalities for Polynomials with Restricted Coefficients
    Peter Borwein
    Tamás Erdélyi
    The Ramanujan Journal, 1997, 1 (3) : 309 - 322
  • [37] A Markov-type inequality for multivariate polynomials on a convex body
    Ganzburg, MI
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2002, 4 (03) : 265 - 268
  • [38] Bernstein- and Markov-type inequalities for rational functions
    Kalmykov, Sergei
    Nagy, Bela
    Totik, Vilmos
    ACTA MATHEMATICA, 2017, 219 (01) : 21 - 63
  • [39] Weighted Sobolev spaces: Markov-type inequalities and duality
    Marcellan, Francisco
    Quintana, Yamilet
    Rodriguez, Jose M.
    BULLETIN OF MATHEMATICAL SCIENCES, 2018, 8 (02) : 233 - 256
  • [40] MARKOV-TYPE ESTIMATES FOR CERTAIN CLASSES OF CONSTRAINED POLYNOMIALS
    ERDELYI, T
    CONSTRUCTIVE APPROXIMATION, 1989, 5 (03) : 347 - 356