Bounded diffusion impedance characterization of battery electrodes using fractional modeling

被引:22
作者
Gabano, Jean-Denis [1 ]
Poinot, Thierry [1 ]
Huard, Benoit [1 ]
机构
[1] Univ Poitiers, LIAS, 2 Rue Pierre Brousse,TSA 41105, F-86073 Poitiers 9, France
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 47卷
关键词
Fractional systems; Non integer modeling; System identification; Parameter estimation; Batteries; Impedance spectroscopy; IDENTIFICATION;
D O I
10.1016/j.cnsns.2016.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry. (c) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 177
页数:14
相关论文
共 30 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[3]   Fractional non-linear modelling of ultracapacitors [J].
Bertrand, Nicolas ;
Sabatier, Jocelyn ;
Briat, Olivier ;
Vinassa, Jean-Michel .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (05) :1327-1337
[4]   Impedance of constant phase element (CPE)-blocked diffusion in film electrodes [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Bueno, P ;
Longo, E ;
Bulhoes, LOS .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1998, 452 (02) :229-234
[5]   Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Fabregat-Santiago, F ;
Bueno, PR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 475 (02) :152-163
[6]   Influence of Microstructure on Impedance Response in Intercalation Electrodes [J].
Cho, Seongkoo ;
Chen, Chien-Fan ;
Mukherjee, Partha P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) :A1202-A1214
[7]   Reducing error and measurement time in impedance spectroscopy using model based optimal experimental design [J].
Ciucci, Francesco ;
Carraro, Thomas ;
Chueh, William C. ;
Lai, Wei .
ELECTROCHIMICA ACTA, 2011, 56 (15) :5416-5434
[8]   Identification of a thermal system using continuous linear parameter-varying fractional modelling [J].
Gabano, J. -D. ;
Poinot, T. ;
Kanoun, H. .
IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (07) :889-899
[9]   Fractional modelling and identification of thermal systems [J].
Gabano, J. -D. ;
Poinot, T. .
SIGNAL PROCESSING, 2011, 91 (03) :531-541
[10]  
Gabano J-D, 2009, FRACTIONAL IDENTIFIC