Weighted Rogers-Ramanujan partitions and Dyson crank

被引:10
作者
Uncu, Ali Kemal [1 ]
机构
[1] Univ Florida, Dept Math, 358 Little Hall, Gainesville, FL 32611 USA
关键词
Dyson crank; Partitions; Rogers-Ramanujan; Weighted partition identities;
D O I
10.1007/s11139-017-9903-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we refine a weighted partition identity of Alladi. We write formulas for generating functions for the number of partitions grouped with respect to a partition statistic other than the norm. We tie our weighted results as well as the different statistics with the crank of a partition. In particular, we prove that the number of partitions into even number of distinct parts whose odd-indexed parts' sum is n is equal to the number of partitions of n with non-negative crank.
引用
收藏
页码:579 / 591
页数:13
相关论文
共 50 条
  • [41] CRANK 0 PARTITIONS AND THE PARITY OF THE PARTITION FUNCTION
    Kaavya, S. J.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (03) : 793 - 801
  • [42] On the distribution of rank and crank statistics for integer partitions
    Nian Hong Zhou
    Research in Number Theory, 2019, 5
  • [43] On the distribution of rank and crank statistics for integer partitions
    Zhou, Nian Hong
    RESEARCH IN NUMBER THEORY, 2019, 5 (02)
  • [44] Polygonal numbers and Rogers-Ramanujan-Gordon theorem
    Merca, Mircea
    RAMANUJAN JOURNAL, 2021, 55 (02) : 783 - 792
  • [45] Weighted cylindric partitions
    Bridges, Walter
    Uncu, Ali K.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (04) : 1309 - 1337
  • [46] Some observations on Dyson's new symmetries of partitions
    Berkovich, A
    Garvan, FG
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) : 61 - 93
  • [47] Weighted cylindric partitions
    Walter Bridges
    Ali K. Uncu
    Journal of Algebraic Combinatorics, 2022, 56 : 1309 - 1337
  • [48] RAMANUJAN'S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (03): : 69 - 80
  • [49] Proof of the Andrews-Dyson-Rhoades conjecture on the spt-crank
    Chen, William Y. C.
    Ji, Kathy Q.
    Zang, Wenston J. T.
    ADVANCES IN MATHEMATICS, 2015, 270 : 60 - 96
  • [50] The Ramanujan-Dyson identities and George Beck's congruence conjectures
    Andrews, George E.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (02) : 239 - 249