Active classification with arrays of tunable chemical sensors

被引:2
|
作者
Gosangi, Rakesh [1 ]
Gutierrez-Osuna, Ricardo [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Active sensing; Sensor arrays; Chemical classification; Metal-oxide sensors; Fably-Perot interferometers; TEMPERATURE MODULATION; IDENTIFICATION; OPTIMIZATION; LOCALIZATION; VISION;
D O I
10.1016/j.chemolab.2014.01.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents Posterior-Weighted Active Search (PWAS), an active-sensing algorithm for classification of volatile compounds with arrays of tunable chemical sensors. The algorithm combines concepts from feature subset selection and sequential Bayesian filtering to optimize the sensor array tunings on-the-fly based on information from previous measurements. Namely, the algorithm maintains an estimate of the posterior probability associated with each chemical class, and updates it sequentially upon arrival of each new sensor observations. The updated posteriors are then used to bias the selection of the next sensor tunings towards the most likely classes, in this way reducing the number of measurements required for discrimination. We characterized PWAS on a database of infrared absorption spectra with 250 analytes, and then validated it experimentally on an array of metal-oxide sensors. Our results show that PWAS outperforms passive-sensing approaches based on sequential forward selection, both in terms of classification performance and robustness to noise in sensor measurements. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
  • [31] Microarray-based chemical sensors and biosensors: Fundamentals and food safety applications
    Chen, Xiaofeng
    Yao, Chanyu
    Li, Zheng
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 158
  • [32] Subspace Representation Learning for Sparse Linear Arrays to Localize More Sources Than Sensors: A Deep Learning Methodology
    Chen, Kuan-Lin
    Rao, Bhaskar D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 1293 - 1308
  • [33] Active Chemical Sensing With Partially Observable Markov Decision Processes
    Gosangi, Rakesh
    Gutierrez-Osuna, Ricardo
    OLFACTION AND ELECTRONIC NOSE, PROCEEDINGS, 2009, 1137 : 562 - 565
  • [34] Chemical Classification of Space Debris
    LI Chunlai
    Institute of Geochemistry
    Acta Geologica Sinica(English Edition), 2004, (05) : 1090 - 1093
  • [35] Chemical classification of space debris
    Li, CL
    Zuo, W
    Liu, JJ
    Ouyang, ZY
    ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2004, 78 (05) : 1090 - 1093
  • [36] Chemical classification of diuretics.
    Hropot, M
    Ullrich, E
    Mutschler, E
    NIEREN-UND HOCHDRUCKKRANKHEITEN, 1996, 25 (04) : 129 - 135
  • [37] Emerging tunable window technologies for active transparency tuning
    Shrestha, M.
    Lau, G. K.
    Bastola, A. K.
    Lu, Z.
    Asundi, A.
    Teo, E. H. T.
    APPLIED PHYSICS REVIEWS, 2022, 9 (03)
  • [38] Chemical Sensors Employed in Electronic Noses: A Review
    Zohora, Syeda Erfana
    Khan, A. M.
    Hundewale, Nisar
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, VOL 3, 2013, 178 : 177 - +
  • [39] Information-theoretic optimization of chemical sensors
    Vergara, Alexander
    Muezzinoglu, Mehmet K.
    Rulkov, Nikolai
    Huerta, Ramon
    SENSORS AND ACTUATORS B-CHEMICAL, 2010, 148 (01) : 298 - 306
  • [40] Direction-Finding Arrays of Directional Sensors for Randomly Located Sources
    Gazzah, Houcem
    Delmas, Jean Pierre
    Jesus, Sergio M.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (04) : 1995 - 2003