Fresh and Hardened Properties of Concrete Incorporating Binary Blend of Metakaolin and Ground Granulated Blast Furnace Slag as Supplementary Cementitious Material

被引:45
作者
Bheel, Naraindas [1 ]
Abbasi, Suhail Ahmed [2 ]
Awoyera, Paul [3 ]
Olalusi, Oladimeji B. [4 ]
Sohu, Samiullah [2 ]
Rondon, Carlos [5 ]
Echeverria, Ana Maria [5 ]
机构
[1] Univ Teknol Petronas, Dept Civil Engn, Tronoh 31750, Perak, Malaysia
[2] Quaid E Awam Univ Engn Sci & Technol, Dept Civil Engn, Larkana, Pakistan
[3] Covenant Univ, Dept Civil Engn, Ota, Nigeria
[4] Univ KwaZulu Natal, Dept Civil Engn, Struct Engn & Computat Mech Grp SECM, Durban, South Africa
[5] Univ Costa, Barranquilla, Colombia
关键词
RICE HUSK ASH; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; AUTOGENOUS SHRINKAGE; PORE STRUCTURE; SILICA FUME; DURABILITY; GGBFS; PERFORMANCE; ADMIXTURES;
D O I
10.1155/2020/8851030
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The growing demand for cement has created a significant impact on the environment. Cement production requires huge energy consumptions; however, Pakistan is currently facing a severe energy crisis. Researchers are therefore engaged with the introduction of agricultural/industrial waste materials with cementitious properties to reduce not only cement production but also energy consumption, as well as helping protect the environment. This research aims to investigate the influence of binary cementitious material (BCM) on fresh and hardened concrete mixes prepared with metakaolin (MK) and ground granulated blast furnace slag (GGBFS) as a partial replacement of cement. The replacement proportions of BCM used were 0%, 5%, 10%, 15%, and 20% by weight of cement. A total of five mixes were prepared with 1 : 1.5 : 3 mix proportion at 0.54 water-cement ratios. A total of 255 concrete specimens were prepared to investigate the compressive, tensile, and flexural strength of concrete after 7, 28, and 56 days, respectively. It was perceived that the workability of concrete mixes decreased with an increasing percentage of MK and GGBFS. Also, the density and permeability of concrete decreased with an increasing quantity of BCM after 28 days. Conversely, the compressive, tensile, and flexural strength of concrete were enhanced by 12.28%, 9.33%, and 9.93%, respectively, at 10% of BCM after 28 days. The carbonation depth reduced with a rise in content of BCM (up to 10%) and then later improved after 28, 90, and 180 days. Moreover, the effect of chloride attack in concrete is reduced with the inclusion of BCM after 28 and 90 days. Similarly, the drying shrinkage of concrete decreased with an increase in the content of BCM after 40 days.
引用
收藏
页数:8
相关论文
共 54 条
[1]  
Alexander M.S. Mindess., 2005, AGGREGATES CONCRETE
[2]   PROPERTIES OF METAKAOLIN BLENDED CEMENTS [J].
AMBROISE, J ;
MAXIMILIEN, S ;
PERA, J .
ADVANCED CEMENT BASED MATERIALS, 1994, 1 (04) :161-168
[3]  
[Anonymous], 2009, EN 12350-2
[4]  
[Anonymous], 2009, Testing Hardened Concrete. Flexural Strength of Test Specimens
[5]  
[Anonymous], 2014, International Journal of Scientific and Technology Research
[6]  
[Anonymous], 2009, 123906 BS EN
[7]  
[Anonymous], 2009, 123903 BS EN
[8]  
[Anonymous], 2009, 19208 BS ISO
[9]  
Arivalagan S, 2014, J CIVIL ENG, V159, P1
[10]   Influence of Binary Blend of Corn Cob Ash and Glass Powder as Partial Replacement of Cement in Concrete [J].
Bheel, Naraindas ;
Adesina, Adeyemi .
SILICON, 2021, 13 (05) :1647-1654