KRULL DIMENSION AND CLASSICAL KRULL DIMENSION OF MODULES

被引:9
作者
Castro Perez, Jaime [1 ]
Rios Montes, Jose [2 ]
机构
[1] Inst Tecnol & Estudios Super Monterrey, Dept Matemat, Tlalpan 14380, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient, Mexico City 04510, DF, Mexico
关键词
Classical Krull dimension; Krull dimension; Prime submodules; Semiprime submodules; Torsion theory; 16S90; 16D50; 16P50; 16P70; INJECTIVE-MODULES; RINGS; PRERADICALS;
D O I
10.1080/00927872.2013.781611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the concept of prime submodule defined by Raggi et al. in [16], for MR-Mod we define the concept of classical Krull dimension relative to a hereditary torsion theory M-tors. We prove that if M is progenerator in sigma[M], M-tors such that M has -Krull dimension then cl.Kdim(M)k(M). Also we show that if M is noetherian, -fully bounded, progenerator of sigma[M], and M ?, then clKdim(M)=k(M).
引用
收藏
页码:3183 / 3204
页数:22
相关论文
共 21 条
[1]   Bijective relative Gabriel correspondence over rings with torsion theoretic Krull dimension [J].
Albu, T ;
Krause, G ;
Teply, ML .
JOURNAL OF ALGEBRA, 2001, 243 (02) :644-674
[2]  
Albu T., 1974, ALGEBRA BERICHE, V21
[3]   M-injective modules and prime M-ideals [J].
Beachy, JA .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (10) :4649-4676
[4]  
Bican L., 1980, Fund. Math., V107, P33, DOI DOI 10.4064/FM-107-1-33-45
[5]  
Castro J., COMM ALGEBRA, V40, P4604
[6]  
CASTRO J., 2012, COMMUN ALGEBRA, V40, P213
[7]  
Gabriel P., 1967, CR HEBD ACAD SCI, V265, P712
[8]  
Golan J. S., 1986, Pitman Monographs and Surveys in Pure and Applied Mathematics., V29
[9]  
Gordon R., 1973, Memoirs of the American Mathematical society, V133
[10]  
JATEGAONKAR AV, 1974, COMMUN ALGEBRA, V2, P429