Current self-amplification effect of graphene-based transistor in high-field transport

被引:12
作者
Chen, Wei [1 ]
Qin, Shiqiao [1 ,2 ]
Zhang, Xue-Ao [1 ,2 ]
Zhang, Sen [1 ]
Fang, Jingyue [1 ]
Wang, Guang [1 ]
Wang, Chaocheng [3 ]
Wang, Li [1 ,3 ]
Chang, Shengli [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[3] Nanchang Univ, Dept Phys, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
701.1 Electricity: Basic Concepts and Phenomena - 714.2 Semiconductor Devices and Integrated Circuits - 761 Nanotechnology - 804 Chemical Products Generally;
D O I
10.1016/j.carbon.2014.06.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a one-atomic-layer carbon material with the symmetrical conduction and valence bands, graphene shows a lot of interesting effects under high electric field. Here, we report an observation of self-amplification effect of current in graphene transistors in high-field transport. The current in graphene transistors could increase with time and finally reaches up to the breakdown threshold of graphene, even under the fixed bias and zero gate voltages. The current self-amplification is accompanied by the enhancement of the graphene p-doping, which demonstrates that this effect arises from the electrons escaping from graphene due to joule heating. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1090 / 1094
页数:5
相关论文
共 26 条
  • [1] Imaging, Simulation, and Electrostatic Control of Power Dissipation in Graphene Devices
    Bae, Myung-Ho
    Ong, Zhun-Yong
    Estrada, David
    Pop, Eric
    [J]. NANO LETTERS, 2010, 10 (12) : 4787 - 4793
  • [2] Graphene-based transparent strain sensor
    Bae, Sang-Hoon
    Lee, Youngbin
    Sharma, Bhupendra K.
    Lee, Hak-Joo
    Kim, Jae-Hyun
    Ahn, Jong-Hyun
    [J]. CARBON, 2013, 51 : 236 - 242
  • [3] Transport Properties of Graphene in the High-Current Limit
    Barreiro, Amelia
    Lazzeri, Michele
    Moser, Joel
    Mauri, Francesco
    Bachtold, Adrian
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (07)
  • [4] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [5] Chen W, 2014, APPL PHYS LETT, V104
  • [6] The nonlinear optical properties of coupling and decoupling graphene layers
    Chen, Wei
    Wang, Guang
    Qin, Shiqiao
    Wang, Chaocheng
    Fang, Jingyue
    Qi, Junli
    Zhang, Xueao
    Wang, Li
    Jia, Honghui
    Chang, Shengli
    [J]. AIP ADVANCES, 2013, 3 (04)
  • [7] Controllable p-n Junction Formation in Mono layer Graphene Using Electrostatic Substrate Engineering
    Chiu, Hsin-Ying
    Perebeinos, Vasili
    Lin, Yu-Ming
    Avouris, Phaedon
    [J]. NANO LETTERS, 2010, 10 (11) : 4634 - 4639
  • [8] Approaching ballistic transport in suspended graphene
    Du, Xu
    Skachko, Ivan
    Barker, Anthony
    Andrei, Eva Y.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (08) : 491 - 495
  • [9] Current annealing and electrical breakdown of epitaxial graphene
    Hertel, S.
    Kisslinger, F.
    Jobst, J.
    Waldmann, D.
    Krieger, M.
    Weber, H. B.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (21)
  • [10] Electronic structures, field effect transistor and bipolar field-effect spin filtering behaviors of functionalized hexagonal graphene nanoflakes
    Li, J.
    Zhang, Z. H.
    Wang, D.
    Zhu, Z.
    Fan, Z. Q.
    Tang, G. P.
    Deng, X. Q.
    [J]. CARBON, 2014, 69 : 142 - 150