SEMICONVEX REGRESSION FOR METAMODELING-BASED OPTIMIZATION

被引:7
|
作者
Hannah, Lauren A. [1 ]
Powell, Warren B. [2 ]
Dunson, David B. [3 ]
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
asymptotic properties; machine learning; multivariate convex functions; metamodeling; nonparametric regression; simulation optimization; MAXIMUM-LIKELIHOOD-ESTIMATION; LOG-CONCAVE DENSITY; NONPARAMETRIC-ESTIMATION; LINEAR-PROGRAMS; CONVEX FUNCTION; DECOMPOSITION; ALGORITHM; CONSISTENCY; INFERENCE; MODELS;
D O I
10.1137/130907070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic search involves finding a set of controllable parameters that minimizes an unknown objective function using a set of noisy observations. We consider the case when the unknown function is convex and a metamodel is used as a surrogate objective function. Often the data are non-i.i.d. and include an observable state variable, such as applicant information in a loan rate decision problem. State information is difficult to incorporate into convex models. We propose a new semiconvex regression method that is used to produce a convex metamodel in the presence of a state variable. We show consistency for this method. We demonstrate its effectiveness for metamodeling on a set of synthetic inventory management problems and a large real-life auto loan dataset.
引用
收藏
页码:573 / 597
页数:25
相关论文
共 50 条
  • [1] Metamodeling-based simulation optimization in manufacturing problems: a comparative study
    João Victor Soares do Amaral
    Rafael de Carvalho Miranda
    José Arnaldo Barra Montevechi
    Carlos Henrique dos Santos
    Gustavo Teodoro Gabriel
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 5205 - 5224
  • [2] Metamodeling-based simulation optimization in manufacturing problems: a comparative study
    Soares do Amaral, Joao Victor
    Miranda, Rafael de Carvalho
    Barra Montevechi, Jose Arnaldo
    dos Santos, Carlos Henrique
    Gabriel, Gustavo Teodoro
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (7-8): : 5205 - 5224
  • [3] Adaptive metamodeling-based simulation optimisation
    do Amaral, Joao Victor Soares
    Miranda, Rafael de Carvalho
    Montevechi, Jose Arnaldo Barra
    dos Santos, Carlos Henrique
    Brito, Flavio de Oliveira
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2024,
  • [4] Metamodeling-based semantic Web languages
    Wu, WM
    Dong, YS
    E-COMMERCE AND WEB TECHNOLOGIES, PROCEEDINGS, 2003, 2738 : 339 - 347
  • [5] A METAMODELING-BASED APPROACH FOR PRODUCTION PLANNING
    Li, Minqi
    Yang, Feng
    Xu, Jie
    PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 2204 - 2215
  • [6] Thermal placement optimization of multichip modules using a sequential metamodeling-based optimization approach
    Cheng, Hsien-Chie
    Tsai, Yang-Howa
    Chen, Kun-Nan
    Fang, Jiunn
    APPLIED THERMAL ENGINEERING, 2010, 30 (17-18) : 2632 - 2642
  • [7] Revelation and Enhancement for Pedestrian Evacuation at Metro Station: Metamodeling-Based Simulation Optimization Approach
    Shao, Yuyang
    Yang, Yifan
    Ng, S. Thomas
    Xing, Jiduo
    Kwok, C. Y.
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2025, 151 (02)
  • [8] MCF - A metamodeling-based visual component composition framework
    Mathaikutty, Deepak A.
    Shukla, Sandeep K.
    ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR EMBEDDED SYSTEMS, 2007, : 319 - +
  • [9] METAMODELING-BASED PERFORMANCE ANALYSIS FOR DIGITAL POWER PLANT
    Zhou, Dengji
    Wei, Tingting
    Ma, Shixi
    Zhang, Huisheng
    Huang, Di
    Lu, Zhenhua
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2018, VOL 2, 2018,
  • [10] Artificial neural network metamodeling-based design optimization of a continuous motorcyclists protection barrier system
    Yilmaz, Ilhan
    Yelek, Ibrahim
    ozcanan, Sedat
    Atahan, Ali Osman
    Hiekmann, J. Marten
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (06) : 4305 - 4323