A novel hot embossing Graphene transfer process for flexible electronics

被引:14
作者
Ballesio, A. [1 ]
Parmeggiani, M. [1 ,2 ]
Verna, A. [1 ]
Frascella, F. [1 ]
Cocuzza, M. [1 ,3 ]
Pirri, C. F. [1 ,2 ]
Marasso, S. L. [1 ,3 ]
机构
[1] Politecn Torino, DISAT, Chilab Mat & Microsyst Lab, Turin, Italy
[2] Italian Inst Technol, Ctr Sustainable Picture Technol, Turin, Italy
[3] CNR IMEM, Parco Area Sci 37a, I-43124 Parma, Italy
关键词
Graphene; CVD; Graphene transfer; Flexible electronics; Hot embossing; G-FET; FIELD-EFFECT TRANSISTORS; RAMAN; LAYER; TIME;
D O I
10.1016/j.mee.2019.02.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work a new Single Layer Graphene (SLG) transfer technique exploiting a hot embossing process was carried out. Flexible electrolyte gated Graphene Field Effect Transistors (G-FET) were fabricated and tested electrically. A polymeric transparent foil suitable for optics and flexible electronics, Cyclic Olefin Copolymer (COC) was used as flexible substrate. Raman characterization confirmed that the new Hot Embossing Graphene Transfer (HEGT) is suitable for the deposition of SLG and the fabrication of G-FETs. A Comparison with SW common transfer method was carried out and proven for G-FETs fabrication. The HEGT devices showed typical characteristics and maintained the same performances when the substrate was bent. This demonstrated that the HEGT allows for efficient transfer of high quality SLG on large area thus providing the opportunity for the exploitation on a large scale production process for flexible substrates.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 50 条
[21]   Impact Print-Type Hot Embossing Process Technology [J].
Yun, Dongwon ;
Kim, Jonghyun ;
Kim, Myungjin ;
Kim, Do-Young ;
Kwon, Junsang ;
Hwang, Jungkook .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (09)
[22]   Graphene and Two-Dimensional Materials-Based Flexible Electronics for Wearable Biomedical Sensors [J].
Joe, Daniel J. J. ;
Park, Eunpyo ;
Kim, Dong Hyun ;
Doh, Il ;
Song, Hyun-Cheol ;
Kwak, Joon Young .
ELECTRONICS, 2023, 12 (01)
[23]   Deformation behavior of solid polymer during hot embossing process [J].
Liu, C. ;
Li, J. M. ;
Liu, J. S. ;
Wang, L. D. .
MICROELECTRONIC ENGINEERING, 2010, 87 (02) :200-207
[24]   Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures [J].
Antonova, Irina V. ;
Kurkina, Irina I. ;
Gutakovskii, Anton K. ;
Kotina, Igor A. ;
Ivanov, Artem I. ;
Nebogatikova, Nadezhda A. ;
Soots, Regina A. ;
Smagulova, Svetlana A. .
MATERIALS & DESIGN, 2019, 164
[25]   Fabrication of microneedle array using LIGA and hot embossing process [J].
Sang Jun Moon ;
Seung S. Lee ;
H. S. Lee ;
T. H. Kwon .
Microsystem Technologies, 2005, 11 :311-318
[26]   Fabrication of microneedle array using LIGA and hot embossing process [J].
Moon, SJ ;
Lee, SS ;
Lee, HS ;
Kwon, TH .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2005, 11 (4-5) :311-318
[27]   Fabrication of a Polyurethane Acrylate/Polyimide-Based Polymer Mold for a Hot Embossing Process [J].
Kim, Kang-In ;
Han, Kang-Soo ;
Yang, Ki-Yeon ;
Kim, Hyeong-Seok ;
Lee, Heon .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (04) :3417-3420
[28]   A novel hot embossing process for producing high-quality glass micro-pillar arrays [J].
Li, Jianzhi ;
Yang, Kang ;
Lian, Guihao ;
Gong, Feng ;
Yang, Gao .
JOURNAL OF CLEANER PRODUCTION, 2023, 421
[29]   Modeling of Viscoelasticity of Thermoplastic Polymers Employed in the Hot Embossing Process [J].
Rabhi, F. ;
Cheng, G. ;
Barriere, T. .
NUMERICAL METHODS IN INDUSTRIAL FORMING PROCESSES, NUMIFORM 2023, 2024, :251-260
[30]   Recovery behavior of thermoplastic polymers in micro hot embossing process [J].
Wang, Jin ;
Yi, Peiyun ;
Deng, Yujun ;
Peng, Linfa ;
Lai, Xinmin ;
Ni, Jun .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2017, 243 :205-216