A novel hot embossing Graphene transfer process for flexible electronics

被引:14
作者
Ballesio, A. [1 ]
Parmeggiani, M. [1 ,2 ]
Verna, A. [1 ]
Frascella, F. [1 ]
Cocuzza, M. [1 ,3 ]
Pirri, C. F. [1 ,2 ]
Marasso, S. L. [1 ,3 ]
机构
[1] Politecn Torino, DISAT, Chilab Mat & Microsyst Lab, Turin, Italy
[2] Italian Inst Technol, Ctr Sustainable Picture Technol, Turin, Italy
[3] CNR IMEM, Parco Area Sci 37a, I-43124 Parma, Italy
关键词
Graphene; CVD; Graphene transfer; Flexible electronics; Hot embossing; G-FET; FIELD-EFFECT TRANSISTORS; RAMAN; LAYER; TIME;
D O I
10.1016/j.mee.2019.02.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work a new Single Layer Graphene (SLG) transfer technique exploiting a hot embossing process was carried out. Flexible electrolyte gated Graphene Field Effect Transistors (G-FET) were fabricated and tested electrically. A polymeric transparent foil suitable for optics and flexible electronics, Cyclic Olefin Copolymer (COC) was used as flexible substrate. Raman characterization confirmed that the new Hot Embossing Graphene Transfer (HEGT) is suitable for the deposition of SLG and the fabrication of G-FETs. A Comparison with SW common transfer method was carried out and proven for G-FETs fabrication. The HEGT devices showed typical characteristics and maintained the same performances when the substrate was bent. This demonstrated that the HEGT allows for efficient transfer of high quality SLG on large area thus providing the opportunity for the exploitation on a large scale production process for flexible substrates.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 26 条
[11]   The vertically stacked organic sensor-transistor on a flexible substrate [J].
Jeong, Shin Woo ;
Jeong, Jin Wook ;
Chang, Seongpil ;
Kang, Seung Youl ;
Cho, Kyoung Ik ;
Ju, Byeong Kwon .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[12]  
Ji XD, 2017, METHODS MOL BIOL, V1572, P205, DOI 10.1007/978-1-4939-6911-1_14
[13]   Flexible glucose sensor using CVD-grown graphene-based field effect transistor [J].
Kwak, Yeon Hwa ;
Choi, Dong Soo ;
Kim, Ye Na ;
Kim, Hyeongkeun ;
Yoon, Dae Ho ;
Ahn, Sang-Sik ;
Yang, Ji-Woon ;
Yang, Woo Seok ;
Seo, Sungkyu .
BIOSENSORS & BIOELECTRONICS, 2012, 37 (01) :82-87
[14]   High Mobility Flexible Graphene Field-Effect Transistors with Self-Healing Gate Dielectrics [J].
Lu, Chun-Chieh ;
Lin, Yung-Chang ;
Yeh, Chao-Hui ;
Huang, Ju-Chun ;
Chiu, Po-Wen .
ACS NANO, 2012, 6 (05) :4469-4474
[15]   A polymer Lab-on-a-Chip for genetic analysis using the arrayed primer extension on microarray chips [J].
Marasso, Simone L. ;
Mombello, Domenico ;
Cocuzza, Matteo ;
Casalena, Davide ;
Ferrante, Ivan ;
Nesca, Alessandro ;
Poiklik, Piret ;
Rekker, Kadri ;
Aaspollu, Anu ;
Ferrero, Sergio ;
Pirri, Candido F. .
BIOMEDICAL MICRODEVICES, 2014, 16 (05) :661-670
[16]   Cost efficient master fabrication process on copper substrates [J].
Marasso, Simone Luigi ;
Canavese, Giancarlo ;
Cocuzza, Matteo .
MICROELECTRONIC ENGINEERING, 2011, 88 (08) :2322-2324
[17]   Current saturation in zero-bandgap, topgated graphene field-effect transistors [J].
Meric, Inanc ;
Han, Melinda Y. ;
Young, Andrea F. ;
Ozyilmaz, Barbaros ;
Kim, Philip ;
Shepard, Kenneth L. .
NATURE NANOTECHNOLOGY, 2008, 3 (11) :654-659
[18]   Graphene Field-Effect Transistors for Radio-Frequency Flexible Electronics [J].
Petrone, Nicholas ;
Meric, Inanc ;
Chari, Tarun ;
Shepard, Kenneth L. ;
Hone, James .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2015, 3 (01) :44-48
[19]  
Rambausek L, 2014, AUTEX RES J, V14, P152, DOI [10.2478/aut-2014-0011, 10.2478/aut-2014-0012]
[20]  
Srinivasan S, 2006, Fuel Cells: From Fundamentals to Applications, P27