Gradient Domain Guided Image Filtering

被引:270
作者
Kou, Fei [1 ,2 ]
Chen, Weihai [1 ]
Wen, Changyun [2 ]
Li, Zhengguo [3 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Inst Infocomm Res, Dept Signal Proc, Singapore 138632, Singapore
基金
中国国家自然科学基金;
关键词
Guided image filter; gradient domain; edge-preserving; detail enhancement; high dynamic range; saliency detection; OPTIMIZATION FRAMEWORK; MODEL;
D O I
10.1109/TIP.2015.2468183
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Guided image filter (GIF) is a well-known local filter for its edge-preserving property and low computational complexity. Unfortunately, the GIF may suffer from halo artifacts, because the local linear model used in the GIF cannot represent the image well near some edges. In this paper, a gradient domain GIF is proposed by incorporating an explicit first-order edge-aware constraint. The edge-aware constraint makes edges be preserved better. To illustrate the efficiency of the proposed filter, the proposed gradient domain GIF is applied for single-image detail enhancement, tone mapping of high dynamic range images and image saliency detection. Both theoretical analysis and experimental results prove that the proposed gradient domain GIF can produce better resultant images, especially near the edges, where halos appear in the original GIF.
引用
收藏
页码:4528 / 4539
页数:12
相关论文
共 44 条
  • [11] Automatic foveation for video compression using a neurobiological model of visual attention
    Itti, L
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (10) : 1304 - 1318
  • [12] A model of saliency-based visual attention for rapid scene analysis
    Itti, L
    Koch, C
    Niebur, E
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) : 1254 - 1259
  • [13] Robust Classification of Objects, Faces, and Flowers Using Natural Image Statistics
    Kanan, Christopher
    Cottrell, Garrison
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2472 - 2479
  • [14] Structure-Preserving Image Smoothing via Region Covariances
    Karacan, Levent
    Erdem, Erkut
    Erdem, Aykut
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (06):
  • [15] Kopf J, 2007, ACM T GRAPHIC, V26, DOI [10.1145/1239451.1239547, 10.1145/1276377.1276497]
  • [16] A closed-form solution to natural image matting
    Levin, Anat
    Lischinski, Dani
    Weiss, Yair
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (02) : 228 - 242
  • [17] TurboPixels: Fast Superpixels Using Geometric Flows
    Levinshtein, Alex
    Stere, Adrian
    Kutulakos, Kiriakos N.
    Fleet, David J.
    Dickinson, Sven J.
    Siddiqi, Kaleem
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (12) : 2290 - 2297
  • [18] Detail-Enhanced Exposure Fusion
    Li, Zheng Guo
    Zheng, Jing Hong
    Rahardja, Susanto
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (11) : 4672 - 4676
  • [19] Weighted Guided Image Filtering
    Li, Zhengguo
    Zheng, Jinghong
    Zhu, Zijian
    Yao, Wei
    Wu, Shiqian
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (01) : 120 - 129
  • [20] Visual-Salience-Based Tone Mapping for High Dynamic Range Images
    Li, Zhengguo
    Zheng, Jinghong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (12) : 7076 - 7082