Gradient Domain Guided Image Filtering

被引:270
作者
Kou, Fei [1 ,2 ]
Chen, Weihai [1 ]
Wen, Changyun [2 ]
Li, Zhengguo [3 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Inst Infocomm Res, Dept Signal Proc, Singapore 138632, Singapore
基金
中国国家自然科学基金;
关键词
Guided image filter; gradient domain; edge-preserving; detail enhancement; high dynamic range; saliency detection; OPTIMIZATION FRAMEWORK; MODEL;
D O I
10.1109/TIP.2015.2468183
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Guided image filter (GIF) is a well-known local filter for its edge-preserving property and low computational complexity. Unfortunately, the GIF may suffer from halo artifacts, because the local linear model used in the GIF cannot represent the image well near some edges. In this paper, a gradient domain GIF is proposed by incorporating an explicit first-order edge-aware constraint. The edge-aware constraint makes edges be preserved better. To illustrate the efficiency of the proposed filter, the proposed gradient domain GIF is applied for single-image detail enhancement, tone mapping of high dynamic range images and image saliency detection. Both theoretical analysis and experimental results prove that the proposed gradient domain GIF can produce better resultant images, especially near the edges, where halos appear in the original GIF.
引用
收藏
页码:4528 / 4539
页数:12
相关论文
共 44 条
  • [1] SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
    Achanta, Radhakrishna
    Shaji, Appu
    Smith, Kevin
    Lucchi, Aurelien
    Fua, Pascal
    Suesstrunk, Sabine
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2274 - 2281
  • [2] Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
  • [3] GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering
    Bhat, Pravin
    Zitnick, C. Lawrence
    Cohen, Michael
    Curless, Brian
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (02):
  • [4] Visual saliency: a biologically plausible contourlet-like frequency domain approach
    Bian, Peng
    Zhang, Liming
    [J]. COGNITIVE NEURODYNAMICS, 2010, 4 (03) : 189 - 198
  • [5] Bilateral Texture Filtering
    Cho, Hojin
    Lee, Hyunjoon
    Kang, Henry
    Lee, Seungyong
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04):
  • [6] Durand F, 2002, ACM T GRAPHIC, V21, P257, DOI 10.1145/566570.566574
  • [7] Edge-preserving decompositions for multi-scale tone and detail manipulation
    Farbman, Zeev
    Fattal, Raanan
    Lischinski, Dani
    Szeliski, Richard
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [8] Gonzalez R. C., 2002, DIGITAL IMAGE PROCES
  • [9] Guided Image Filtering
    He, Kaiming
    Sun, Jian
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (06) : 1397 - 1409
  • [10] Edge-aware Gradient Domain Optimization Framework for Image Filtering by Local Propagation
    Hua, Miao
    Bie, Xiaohui
    Zhang, Minying
    Wang, Wencheng
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : CP1 - CP32