EXISTENCE OF NONOSCILLATORY SOLUTIONS TO SECOND-ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES

被引:20
作者
Gao, Jin [1 ]
Wang, Qiru [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Second-order nonlinear neutral dynamic equations; time scales; nonoscillatory solutions; existence; Kranoselskii's fixed point theorem;
D O I
10.1216/RMJ-2013-43-5-1521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By employing Kranoselskii's fixed point theorem, we establish the existence of nonoscillatory solutions to the second- order nonlinear neutral dynamic equation [r(t)(x(t)+ p(t) x(g(t)))(Delta)](Delta) + f(t, x(h(t))) = 0 on a time scale. In particular, one interesting example is included to illustrate the versatility of our results.
引用
收藏
页码:1521 / 1535
页数:15
相关论文
共 8 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
[Anonymous], 2003, ADV DYNAMIC EQUATION
[3]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[4]  
Chen Y., 1992, FUNKC EKVACIOJ-SER I, V35, P557
[5]  
Erbe L. H., 1995, MONO TEXT PURE APPL, V190
[6]   Oscillation for neutral dynamic functional equations on time scales [J].
Mathsen, RM ;
Wang, QR ;
Wu, HW .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (07) :651-659
[7]   Existence of nonoscillatory solutions to neutral dynamic equations on time scales [J].
Zhu, Zhi-Qiang ;
Wang, Qi-Ru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :751-762
[8]   Frequency measures on time scales with applications [J].
Zhu, Zhi-Qiang ;
Wang, Qi-Ru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) :398-409