The mean value theorem and Taylor's theorem for fractional derivatives with Mittag-Leffler kernel

被引:39
|
作者
Fernandez, Arran [1 ]
Baleanu, Dumitru [2 ,3 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[2] Cankaya Univ, Dept Math, Ankara, Turkey
[3] Inst Space Sci, Magurele, Romania
基金
英国工程与自然科学研究理事会;
关键词
Fractional calculus; Mean value theorem; Taylor's theorem; Mittag-Leffler kernel; NONSINGULAR KERNEL; PHARMACOKINETICS; FORMULA;
D O I
10.1186/s13662-018-1543-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish analogues of the mean value theorem and Taylor's theorem for fractional differential operators defined using a Mittag-Leffler kernel. We formulate a new model for the fractional Boussinesq equation by using this new Taylor series expansion.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag–Leffler kernel
    Arran Fernandez
    Dumitru Baleanu
    Advances in Difference Equations, 2018
  • [2] Extension of Mittag-Leffler's theorem
    Hemdaoui M.
    Soigatt A.
    Rendiconti del Circolo Matematico di Palermo, 2001, 50 (2) : 247 - 258
  • [3] Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay
    Sadati, S. J.
    Baleanu, D.
    Ranjbar, A.
    Ghaderi, R.
    Abdeljawad , T.
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [4] A NOTE ON THE MITTAG-LEFFLER EXPANSION THEOREM
    KLAMKIN, MS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (01) : 59 - 59
  • [5] On some new properties of fractional derivatives with Mittag-Leffler kernel
    Baleanu, Dumitru
    Fernandez, Arran
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 444 - 462
  • [6] On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Ali, Saeed M.
    Shah, Kamal
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [7] The Peano-Sard theorem for fractional operators with Mittag-Leffler kernel and application in classical numerical approximation
    Jornet, Marc
    Nieto, Juan J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
  • [8] On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions
    Mohammed S. Abdo
    Thabet Abdeljawad
    Saeed M. Ali
    Kamal Shah
    Advances in Difference Equations, 2021
  • [9] FRACTIONAL DIRAC SYSTEMS WITH MITTAG-LEFFLER KERNEL
    Allahverd, Bilender P.
    Tuna, Huseyin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (01): : 1 - 12