Melanoma Disease Detection Using Convolutional Neural Networks

被引:0
|
作者
Sanketh, Ravva Sai [1 ]
Bala, M. Madhu [1 ]
Reddy, Panati Viswa Narendra [1 ]
Kumar, G. V. S. Phani [1 ]
机构
[1] Inst Aeronaut Engn, Dept Comp Sci & Engn, Hyderabad, India
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020) | 2020年
关键词
Skin cancer; deep learning; convolution neural networks; !text type='Python']Python[!/text;
D O I
10.1109/iciccs48265.2020.9121075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There are different forms of cancers out of which skin cancer is the most common one, Usually, Every year the people infected by Skin Cancer will be more than the number of people infected by all other types of cancer combined. Mortality rates of skin cancer in the world have risen. According to the World Health Organization, the early finding of transformations of the skin significantly improve the chances of good medication and treatment so that the patient can be saved. The Computer system integrated with the software developed from deep learning, namely convolutional neural networks (CNN), is good at detecting skin cancer than experienced dermatologists, so now We had extended this Deep Learning Architecture to develop a model that categorizes the given infected skin image of patient as Malignant (Melanoma or Harmful) or Benign (Harmless) By using various libraries in Python. This model is trained and tested by using dataset taken from International Skin Imaging Collaboration(ISIC). The main aim of this model is to detect skin cancer for patients in earlier stages and treat them effectively so that we can reduce the mortality rate.
引用
收藏
页码:1031 / 1037
页数:7
相关论文
共 50 条
  • [11] Wheeze Detection Using Convolutional Neural Networks
    Kochetov, Kirill
    Putin, Evgeny
    Azizov, Svyatoslav
    Skorobogatov, Ilya
    Filchenkov, Andrey
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 162 - 173
  • [12] Melanoma Classification from Dermoscopy Images Using Ensemble of Convolutional Neural Networks
    Raza, Rehan
    Zulfiqar, Fatima
    Tariq, Shehroz
    Anwar, Gull Bano
    Sargano, Allah Bux
    Habib, Zulfiqar
    MATHEMATICS, 2022, 10 (01)
  • [13] Glasses Detection Using Convolutional Neural Networks
    Shao, Li
    Zhu, Ronghang
    Zhao, Qijun
    BIOMETRIC RECOGNITION, 2016, 9967 : 711 - 719
  • [14] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [15] Alzheimer's disease detection using depthwise separable convolutional neural networks
    Liu, Junxiu
    Li, Mingxing
    Luo, Yuling
    Yang, Su
    Li, Wei
    Bi, Yifei
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 203
  • [16] SKIN MELANOMA SEGMENTATION USING RECURRENT AND CONVOLUTIONAL NEURAL NETWORKS
    Attia, Mohamed
    Hossny, Mohamed
    Nahavandi, Saeid
    Yazdabadi, Anousha
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 292 - 296
  • [17] Fish Detection and Classification Using Convolutional Neural Networks
    Rekha, B. S.
    Srinivasan, G. N.
    Reddy, Sravan Kumar
    Kakwani, Divyanshu
    Bhattad, Niraj
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1221 - 1231
  • [18] Android Botnet Detection using Convolutional Neural Networks
    Hojjatinia, Sina
    Hamzenejadi, Sajad
    Mohseni, Hadis
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 674 - 679
  • [19] Fall detection using mixtures of convolutional neural networks
    Thao V. Ha
    Hoang M. Nguyen
    Son H. Thanh
    Binh T. Nguyen
    Multimedia Tools and Applications, 2024, 83 : 18091 - 18118
  • [20] Robust smile detection using convolutional neural networks
    Bianco, Simone
    Celona, Luigi
    Schettini, Raimondo
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (06)