Separated Nets in Nilpotent Groups

被引:3
作者
Dymarz, Tullia [1 ]
Kelly, Michael [2 ]
Li, Sean [2 ]
Lukyanenko, Anton [3 ]
机构
[1] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
[2] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[3] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
EUCLIDEAN-SPACE; DELONE SETS; MAPS;
D O I
10.1512/iumj.2018.67.7384
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we generalize several results on separated nets in Euclidean space to separated nets in connected, simply connected nilpotent Lie groups. We show that every such group G contains separated nets that are not biLipschitz equivalent. We define a class of separated nets in these groups arising from a generalization of the cut-and-project quasi-crystal construction, and show that generically any such separated net is bounded-displacement equivalent to a separated net of constant covolume. In addition, we use a generalization of the Laczkovich criterion to provide "exotic" perturbations of such separated nets.
引用
收藏
页码:1143 / 1183
页数:41
相关论文
共 25 条
  • [1] Linearly repetitive Delone sets are rectifiable
    Aliste-Prieto, Jose
    Coronel, Daniel
    Gambaudo, Jean-Marc
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (02): : 275 - 290
  • [2] [Anonymous], INDAGATIONES MATH
  • [3] Geometry of locally compact groups of polynomial growth and shape of large balls
    Breuillard, Emmanuel
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (03) : 669 - 732
  • [4] Rectifying separated nets
    Burago, D
    Kleiner, B
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (01) : 80 - 92
  • [5] Separated nets in Euclidean space and Jacobians of Bilipschitz maps
    Burago, D
    Kleiner, B
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (02) : 273 - 282
  • [6] Christ M., 1990, Colloq. Math., V61, P601
  • [7] BOUNDED INTERPOLATIONS BETWEEN LATTICES
    DUNEAU, M
    OGUEY, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02): : 461 - 475
  • [8] DISPLACIVE TRANSFORMATIONS AND QUASI-CRYSTALLINE SYMMETRIES
    DUNEAU, M
    OGUEY, C
    [J]. JOURNAL DE PHYSIQUE, 1990, 51 (01): : 5 - 19
  • [9] The quantitative behaviour of polynomial orbits on nilmanifolds
    Green, Ben
    Tao, Terence
    [J]. ANNALS OF MATHEMATICS, 2012, 175 (02) : 465 - 540
  • [10] Gromov M., 1993, LONDON MATH SOC LECT, V2, P1