Nanostructured Single-Ion-Conducting Hybrid Electrolytes Based on Salty Nanoparticles and Block Copolymers

被引:54
作者
Villaluenga, Irune [1 ,2 ,4 ]
Inceoglu, Sebnem [2 ]
Jiang, Xi [3 ]
Chen, Xi Chelsea [3 ]
Chintapalli, Mahati [3 ,5 ]
Wang, Dunyang Rita [3 ,5 ]
Devaux, Didier [1 ,2 ,4 ]
Balsara, Nitash P. [1 ,2 ,3 ,4 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, JCESR, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
LITHIUM-METAL BATTERIES; POLYMER ELECTROLYTES; TRANSFERENCE NUMBER; MOLECULAR-WEIGHT; TRANSPORT; MORPHOLOGY; CELLS;
D O I
10.1021/acs.macromol.6b02522
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We report on the synthesis and characterization of a series of microphase-separated, single-ion-conducting block copolymer electrolytes. Salty nanoparticles comprising silsesquioxane cores with covalently bound polystyrenesulfonyllithium (trifluoromethylsulfonyl)imide (PSLiTFSI) chains were synthesized by nitroxidemediated polymerization. Hybrid electrolytes were obtained by mixing the salty nanoparticles into a microphase-separated polystyrene-b-poly(ethylene oxide) (SEO) block copolymer. Miscibility of PSLiTFSI and poly(ethylene oxide) (PEO) results in localization of the nanoparticles in the PEO-rich microphase. The morphology of hybrid electrolytes was determined by scanning transmission electron microscopy. We explore the relationship between the morphology and ionic conductivity of the hybrid. The transference number of the electrolyte with the highest ionic conductivity was measured by dc polarization to confirm the single-ion-conducting character of the electrolyte. Discharge curves obtained from lithium metal-hybrid electrolyteFePO4 batteries are compared to the data obtained from the batteries with a conventional block copolymer electrolyte.
引用
收藏
页码:1998 / 2005
页数:8
相关论文
共 27 条
  • [21] Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes
    Singh, Mohit
    Odusanya, Omolola
    Wilmes, Gregg M.
    Eitouni, Hany B.
    Gomez, Enrique D.
    Patel, Amish J.
    Chen, Vincent L.
    Park, Moon Jeong
    Fragouli, Panagiota
    Iatrou, Hermis
    Hadjichristidis, Nikos
    Cookson, David
    Balsara, Nitash P.
    [J]. MACROMOLECULES, 2007, 40 (13) : 4578 - 4585
  • [22] Discharge model for the lithium iron-phosphate electrode
    Srinivasan, V
    Newman, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (10) : A1517 - A1529
  • [23] Effect of Molecular Weight and Salt Concentration on Ion Transport and the Transference Number in Polymer Electrolytes
    Timachova, Ksenia
    Watanabe, Hiroshi
    Balsara, Nitash P.
    [J]. MACROMOLECULES, 2015, 48 (21) : 7882 - 7888
  • [24] Nanoparticle-Driven Assembly of Highly Conducting Hybrid Block Copolymer Electrolytes
    Villaluenga, Irune
    Chen, Xi Chelsea
    Devaux, Didier
    Hallinan, Daniel T.
    Balsara, Nitash P.
    [J]. MACROMOLECULES, 2015, 48 (02) : 358 - 364
  • [25] Cycle-life model for graphite-LiFePO4 cells
    Wang, John
    Liu, Ping
    Hicks-Garner, Jocelyn
    Sherman, Elena
    Soukiazian, Souren
    Verbrugge, Mark
    Tataria, Harshad
    Musser, James
    Finamore, Peter
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (08) : 3942 - 3948
  • [26] Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids
    Warren, Scott C.
    Disalvo, Francis J.
    Wiesner, Ulrich
    [J]. NATURE MATERIALS, 2007, 6 (02) : 156 - U23
  • [27] LiFePO4/polymer/natural graphite: low cost Li-ion batteries
    Zaghib, K
    Striebel, K
    Guerfi, A
    Shim, J
    Armand, M
    Gauthier, M
    [J]. ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 263 - 270