The Consequences of Glacier Retreat Are Uneven Between Plant Species

被引:39
作者
Losapio, Gianalberto [1 ]
Cerabolini, Bruno E. L. [2 ]
Maffioleffi, Chiara [3 ]
Tampucci, Duccio [3 ]
Gobbi, Mauro [4 ]
Caccianiga, Marco [3 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[2] Univ Insubria, Dept Biotechnol & Life Sci, Varese, Italy
[3] Univ Milan, Dept Biosci, Milan, Italy
[4] MUSE Museum Sci, Trento, Italy
来源
FRONTIERS IN ECOLOGY AND EVOLUTION | 2021年 / 8卷
基金
瑞士国家科学基金会;
关键词
biodiversity change; community dynamic; competition; facilitation; glacier forelands; global warming; hierarchical modeling; plant networks; PRIMARY SUCCESSION; CLIMATE-CHANGE; VEGETATION SUCCESSION; MECHANISMS; COMMUNITIES; NETWORKS; DIVERSITY; FRAMEWORK; RESPONSES; ECOSYSTEM;
D O I
10.3389/fevo.2020.616562
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Glaciers are retreating worldwide, exposing new terrain to colonization by plants. Recently-deglaciated terrains have been a subject of ecological studies for a long time, as they represent a unique natural model system for examining the effects of global warming associated with glacier retreat on biodiversity and the spatio-temporal dynamic of communities. However, we still have a limited understanding of how physical and biotic factors interactively influence species persistence and community dynamics after glacier retreat and glacier extinction. Using hierarchical joint species distribution models, we integrated data on plant species occurrence at fine spatial scale, spatio-temporal context, environmental conditions, leaf traits, and species-to-species associations in plant communities spanning 0 to c 5,000 years on average after glacier retreat. Our results show that plant diversity initially increases with glacier retreat, but ultimately decreases after glacier extinction. The 22% of plant species non-linearly respond to glacier retreat and will locally disappear with glacier extinction. At the local scale, soil carbon enrichment and reduction of physical (topographic) disturbance positively contribute to distribution patterns in 66% of the species, indicating a strong impact of community-level environmental conditions. Furthermore, positive and negative associations among species play a relevant role (up to 34% of variance) in driving the spatio-temporal dynamic of plant communities. Global warming prompts a shift from facilitation to competition: positive associations prevail among pioneer species, whereas negative associations are relatively more common among late species. This pattern suggests a role of facilitation for enhancing plant diversity in recently ice-free terrains and of competition for decreasing species persistence in late stages. Associated to that, species persisting the most show more "conservative" traits than species of concern. In summary, although plant diversity initially increases with glacier retreat, more than a fifth of plant species are substantially declining and will disappear with glacier extinction. Even for the "winners," the "victory" is not to be taken for granted due to the negative impact of rising competition. Integrating survey data with hierarchical and network models can help to forecast biodiversity change and anticipate cascading effects of glacier retreat on mountain ecosystems. These effects include the reduction of ecosystem services and benefits to humans, including food production from the pioneer species Artemisia genipi.
引用
收藏
页数:11
相关论文
共 71 条
  • [1] Novel competitors shape species' responses to climate change
    Alexander, Jake M.
    Diez, Jeffrey M.
    Levine, Jonathan M.
    [J]. NATURE, 2015, 525 (7570) : 515 - +
  • [2] [Anonymous], 2001, UNIFIED NEUTRAL THEO
  • [3] [Anonymous], 2014, Mutualistic networks
  • [4] Fitting Linear Mixed-Effects Models Using lme4
    Bates, Douglas
    Maechler, Martin
    Bolker, Benjamin M.
    Walker, Steven C.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01): : 1 - 48
  • [5] POSITIVE INTERACTIONS IN COMMUNITIES
    BERTNESS, MD
    CALLAWAY, R
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 1994, 9 (05) : 191 - 193
  • [6] Statistical modeling of patterns in annual reproductive rates
    Brooks, Mollie E.
    Kristensen, Kasper
    Darrigo, Maria Rosa
    Rubim, Paulo
    Uriarte, Maria
    Bruna, Emilio
    Bolker, Benjamin M.
    [J]. ECOLOGY, 2019, 100 (07)
  • [7] A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale
    Burns, K. C.
    Zotz, G.
    [J]. ECOLOGY, 2010, 91 (02) : 377 - 385
  • [8] The functional basis of a primary succession resolved by CSR classification
    Caccianiga, M
    Luzzaro, A
    Pierce, S
    Ceriani, RM
    Cerabolini, B
    [J]. OIKOS, 2006, 112 (01) : 10 - 20
  • [9] Pioneer herbaceous vegetation on glacier forelands in the Italian Alps
    Caccianiga, M
    Andreis, C
    [J]. PHYTOCOENOLOGIA, 2004, 34 (01) : 55 - 89
  • [10] Callaway RM, 1997, ECOLOGY, V78, P1958, DOI 10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO