Establishment of the Winter-Annual Growth Habit via FRIGIDA-Mediated Histone Methylation at FLOWERING LOCUS C in Arabidopsis

被引:145
作者
Jiang, Danhua [1 ,2 ]
Gu, Xiaofeng [1 ,2 ]
He, Yuehui [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore
[2] Temasek Life Sci Lab, Singapore 117604, Singapore
关键词
MADS-BOX GENE; FLORAL TRANSITION; H3K4; METHYLATION; DOMAIN PROTEIN; REPRESSION; TIME; VERNALIZATION; EXPRESSION; THALIANA; REQUIRES;
D O I
10.1105/tpc.109.067967
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Arabidopsis thaliana, flowering-time variation exists among accessions, and the winter-annual (late-flowering without vernalization) versus rapid-cycling (early flowering) growth habit is typically determined by allelic variation at FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FRI upregulates the expression of FLC, a central floral repressor, to levels that inhibit flowering, resulting in the winter-annual habit. Here, we show that FRI promotes histone H3 lysine-4 trimethylation (H3K4me3) in FLC to upregulate its expression. We identified an Arabidopsis homolog of the human WDR5, namely, WDR5a, which is a conserved core component of the human H3K4 methyltransferase complexes called COMPASS-like. We found that recombinant WDR5a binds H3K4-methylated peptides and that WDR5a also directly interacts with an H3K4 methyltransferase, ARABIDOPSIS TRITHORAX1. FRI mediates WDR5a enrichment at the FLC locus, leading to increased H3K4me3 and FLC upregulation. WDR5a enrichment is not required for elevated H3K4me3 in FLC upon loss of function of an FLC repressor, suggesting that two distinct mechanisms underlie elevated H3K4me3 in FLC. Our findings suggest that FRI is involved in the enrichment of a WDR5a-containing COMPASS-like complex at FLC chromatin that methylates H3K4, leading to FLC upregulation and thus the establishment of the winter-annual growth habit.
引用
收藏
页码:1733 / 1746
页数:14
相关论文
共 61 条
[1]   ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes [J].
Alvarez-Venegas, R ;
Pien, S ;
Sadder, M ;
Witmer, X ;
Grossniklaus, U ;
Avramova, Z .
CURRENT BIOLOGY, 2003, 13 (08) :627-637
[2]   Regulation of flowering time by FVE, a retinoblastoma-associated protein [J].
Ausín, I ;
Alonso-Blanco, C ;
Jarillo, JA ;
Ruiz-García, L ;
Martínez-Zapater, JM .
NATURE GENETICS, 2004, 36 (02) :162-166
[3]   The timing of developmental transitions in plants [J].
Baurle, Isabel ;
Dean, Caroline .
CELL, 2006, 125 (04) :655-664
[4]   Differential Interactions of the Autonomous Pathway RRM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets [J].
Baurle, Isabel ;
Dean, Caroline .
PLOS ONE, 2008, 3 (07)
[5]   EMBRYONIC FLOWER1 participates in Polycomb group-mediated AG gene silencing in Arabidopsis [J].
Calonje, Myriam ;
Sanchez, Rosario ;
Chen, Lingjing ;
Sung, Z. Renee .
PLANT CELL, 2008, 20 (02) :277-291
[6]   Crystal structure of human histone lysine-specific demethylase 1 (LSD1) [J].
Chen, Yong ;
Yang, Yuting ;
Wang, Feng ;
Wan, Ke ;
Yamane, Kenichi ;
Zhang, Yi ;
Lei, Ming .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (38) :13956-13961
[7]   SUPPRESSOR OFFRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis [J].
Choi, K ;
Kim, S ;
Kim, SY ;
Kim, M ;
Hyun, Y ;
Lee, H ;
Choe, S ;
Kim, SG ;
Michaels, S ;
Lee, I .
PLANT CELL, 2005, 17 (10) :2647-2660
[8]   Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development [J].
Choi, Kyuha ;
Park, Chulmin ;
Lee, Jungeun ;
Oh, Mijin ;
Noh, Bosl ;
Lee, Ilha .
DEVELOPMENT, 2007, 134 (10) :1931-1941
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   A gateway cloning vector set for high-throughput functional analysis of genes in planta [J].
Curtis, MD ;
Grossniklaus, U .
PLANT PHYSIOLOGY, 2003, 133 (02) :462-469