Gene technology and tissue engineering

被引:2
作者
Andree, C [1 ]
Kullmer, M [1 ]
Wenger, A [1 ]
Schaefer, DJ [1 ]
Kneser, U [1 ]
Stark, GB [1 ]
机构
[1] Freiburg Univ Hosp, Dept Plast & Hand Surg, Freiburg, Germany
关键词
gene transfer techniques; tissue engineering;
D O I
10.1080/136457002320174159
中图分类号
R61 [外科手术学];
学科分类号
摘要
The interest in gene therapy to treat human diseases has increased with the advances in recombinant DNA technology and the improved physical, chemical and biological methods of delivering genes to mammalian cells. Areas of therapeutic interest for gene therapy relevant for tissue engineering are, for example, in the treatment of wounds, skin diseases, nerve, bone, and muscle diseases. The transfer of a gene into a cell can lead to the addition or modification of a function and may be an attractive alternative to the pharmacological use of proteins. The complementation of defective functions could also be an effective treatment for inherited skin diseases with a gene defect. The two major challenges facing gene technology in tissue engineering are the problem of identifying appropriate genes that are effective in tissue repair, and the reliable expression of the therapeutic gene at clinically beneficial levels. This review discusses principles and methods of delivering genes encoding growth factors into cells, together with their respective advantages and disadvantages.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 67 条
[1]   HUMAN DYSTROPHIN EXPRESSION IN MDX MICE AFTER INTRAMUSCULAR INJECTION OF DNA CONSTRUCTS [J].
ACSADI, G ;
DICKSON, G ;
LOVE, DR ;
JANI, A ;
WALSH, FS ;
GURUSINGHE, A ;
WOLFF, JA ;
DAVIES, KE .
NATURE, 1991, 352 (6338) :815-818
[2]   SOME ASPECTS OF THE DESOXYRIBONUCLEASE ACTIVITIES OF ANIMAL TISSUES [J].
ALLFREY, V ;
MIRSKY, AE .
JOURNAL OF GENERAL PHYSIOLOGY, 1952, 36 (02) :227-241
[3]   Excitement in gene therapy! [J].
Anderson, WF .
HUMAN GENE THERAPY, 2001, 12 (12) :1483-1484
[4]   IN-VIVO TRANSFER AND EXPRESSION OF A HUMAN EPIDERMAL GROWTH-FACTOR GENE ACCELERATES WOUND REPAIR [J].
ANDREE, C ;
SWAIN, WF ;
PAGE, CP ;
MACKLIN, MD ;
SLAMA, J ;
HATZIS, D ;
ERIKSSON, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (25) :12188-12192
[5]   Plasmid gene delivery to human keratinocytes through a fibrin-mediated transfection system [J].
Andree, C ;
Voigt, M ;
Wenger, A ;
Erichsen, T ;
Bittner, K ;
Schaefer, D ;
Walgenbach, KJ ;
Borges, J ;
Horch, RE ;
Eriksson, E ;
Stark, B .
TISSUE ENGINEERING, 2001, 7 (06) :757-766
[6]   Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia [J].
Baumgartner, I ;
Pieczek, A ;
Manor, O ;
Blair, R ;
Kearney, M ;
Walsh, K ;
Isner, JM .
CIRCULATION, 1998, 97 (12) :1114-1123
[7]   Particle-mediated gene transfer with transforming growth factor-beta 1 cDNAs enhances wound repair in rat skin [J].
Benn, SI ;
Whitsitt, JS ;
Broadley, KN ;
Nanney, LB ;
Perkins, D ;
He, L ;
Patel, M ;
Morgen, JR ;
Swain, WF ;
Davidson, JM .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 98 (12) :2894-2902
[8]  
BIRD JWC, 1986, MYOLOGY, P745
[9]   Tissue engineering via local gene delivery [J].
Bonadio, J .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2000, 78 (06) :303-311
[10]   Localized, direct plasmid gene delivery in vivo:: prolonged therapy results in reproducible tissue regeneration [J].
Bonadio, J ;
Smiley, E ;
Patil, P ;
Goldstein, S .
NATURE MEDICINE, 1999, 5 (07) :753-759