Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide

被引:10
|
作者
Szutkowska, M. [1 ]
Boniecki, M. [2 ]
Cygan, S. [1 ]
Kalinka, A. [1 ]
Grilli, M. L. [3 ]
Balos, S. [4 ]
机构
[1] Inst Adv Mfg Technol, Krakow, Poland
[2] Inst Elect Mat Technol, Warsaw, Poland
[3] ENEA Energy Technol Dept, Rome, Italy
[4] Fac Tech Sci, Novi Sad, Serbia
来源
E-MRS FALL SYMPOSIUM I: SOLUTIONS FOR CRITICAL RAW MATERIALS UNDER EXTREME CONDITIONS | 2018年 / 329卷
关键词
Hardmetals; sintering HIP; fracture toughness; Palmqvist cracks; titanium carbide;
D O I
10.1088/1757-899X/329/1/012015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The addition of various amounts of TiC0.9 phase in the range from 5wt.% to 20wt.% substituting WC phase was applied in WC-Co hardmetals with 9.5 wt.% bonding cobalt phase. The hardmetals were consolidated using Hot Isostatic Pressing (HIP) method at temperature of 1573K and pressure of 1500 atm. The plain strain fracture toughness has been determined from 3PB test on a pre-cracking single edge notched beam (SENB) specimen. The indentation fracture toughness with Vickers cracks for comparison was also measured, which changed from 12 to 9.0 MPa.m(1/2). The amount of the TiC0.9 phase affected the mechanical and physical properties: Vickers hardness from 12.5 to 14.0 GPa, Young's modulus from 550 to 460 GPa, density from 13.1 to 9.6 g/cm(3), friction coefficient from 0.24 to 0.45, fracture toughness from 16.8 to 11.0 MPa.m(1/2). Scanning electron microscopy (SEM), X-ray and electron diffraction phase analysis were used to examine the WC-Co hardmetal with addition of the TiC0.9 phase. For comparison, physical and mechanical properties of the WC-Co hardmetals before modification were tested.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Influence of the milling parameters on the sintering behaviour of WC-Co composites
    Stanciu, Victor Ioan
    Vitry, Veronique
    Delaunois, Fabienne
    MATERIALS AND MANUFACTURING PROCESSES, 2020, 35 (07) : 811 - 816
  • [32] A dual composite of WC-Co
    Zhigang Fang
    Greg Lockwood
    Anthony Griffo
    Metallurgical and Materials Transactions A, 1999, 30 : 3231 - 3238
  • [33] Fabrication and performances of WC-Co cemented carbide with a low cobalt content
    Yang, Xiao-Hui
    Wang, Kai-Fei
    Zhang, Guo-Hua
    Chou, Kuo-Chih
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2022, 19 (03) : 1341 - 1353
  • [34] Application of ASTM C1421 to WC-Co fracture toughness measurement
    Swab, Jeffrey J.
    Wright, Jared C.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2016, 58 : 8 - 13
  • [35] Statistics-based numerical study of the fatigue damage evolution in the microstructures of WC-Co hardmetals
    Jiang, Keng
    Chen, Geng
    Bezold, Alexander
    Broeckmann, Christoph
    MECHANICS OF MATERIALS, 2022, 164
  • [36] Anisotropic nanoscratch resistance of WC grains in WC-Co composite
    Csanadi, Tamas
    Novak, Michal
    Naughton-Duszova, Annamaria
    Dusza, Jan
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 51 : 188 - 191
  • [37] Carbon content dependence of grain growth mode in VC-doped WC-Co hardmetals
    Sugiyama, I.
    Mizumukai, Y.
    Taniuchi, T.
    Okada, K.
    Shirase, F.
    Tanase, T.
    Ikuhara, Y.
    Yamamoto, T.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 52 : 245 - 251
  • [38] Influence of μ-size WC on the Corrosion Behavior of Ultrafine WC/WC-Co Cemented Carbides
    Liu, Chao
    Liu, Yang
    Ma, Yunzhu
    Liu, Wensheng
    He, Yuehui
    JOURNAL OF SUPERHARD MATERIALS, 2019, 41 (05) : 334 - 344
  • [39] Model scratch corrosion studies for WC/Co hardmetals
    Gee, M. G.
    WEAR, 2010, 268 (9-10) : 1170 - 1177
  • [40] Crack propagation characteristic and toughness of functionally graded WC-Co cemented carbide
    Zhang Li
    Wang Yuan-jie
    Yu Xian-wang
    Chen Shu
    Xiong Xiang-jun
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2008, 26 (04): : 295 - 300