Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide

被引:10
|
作者
Szutkowska, M. [1 ]
Boniecki, M. [2 ]
Cygan, S. [1 ]
Kalinka, A. [1 ]
Grilli, M. L. [3 ]
Balos, S. [4 ]
机构
[1] Inst Adv Mfg Technol, Krakow, Poland
[2] Inst Elect Mat Technol, Warsaw, Poland
[3] ENEA Energy Technol Dept, Rome, Italy
[4] Fac Tech Sci, Novi Sad, Serbia
来源
E-MRS FALL SYMPOSIUM I: SOLUTIONS FOR CRITICAL RAW MATERIALS UNDER EXTREME CONDITIONS | 2018年 / 329卷
关键词
Hardmetals; sintering HIP; fracture toughness; Palmqvist cracks; titanium carbide;
D O I
10.1088/1757-899X/329/1/012015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The addition of various amounts of TiC0.9 phase in the range from 5wt.% to 20wt.% substituting WC phase was applied in WC-Co hardmetals with 9.5 wt.% bonding cobalt phase. The hardmetals were consolidated using Hot Isostatic Pressing (HIP) method at temperature of 1573K and pressure of 1500 atm. The plain strain fracture toughness has been determined from 3PB test on a pre-cracking single edge notched beam (SENB) specimen. The indentation fracture toughness with Vickers cracks for comparison was also measured, which changed from 12 to 9.0 MPa.m(1/2). The amount of the TiC0.9 phase affected the mechanical and physical properties: Vickers hardness from 12.5 to 14.0 GPa, Young's modulus from 550 to 460 GPa, density from 13.1 to 9.6 g/cm(3), friction coefficient from 0.24 to 0.45, fracture toughness from 16.8 to 11.0 MPa.m(1/2). Scanning electron microscopy (SEM), X-ray and electron diffraction phase analysis were used to examine the WC-Co hardmetal with addition of the TiC0.9 phase. For comparison, physical and mechanical properties of the WC-Co hardmetals before modification were tested.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Scratch testing of WC/Co hardmetals
    Zunega, J. C. P.
    Gee, M. G.
    Wood, R. J. K.
    Walker, J.
    TRIBOLOGY INTERNATIONAL, 2012, 54 : 77 - 86
  • [22] Sliding wear and friction behaviour of WC-stainless steel and WC-Co composites
    Vilhena, Luis M.
    Fernandes, Cristina M.
    Sacramento, Joaquim
    Senos, Ana M. R.
    Ramalho, Amilcar
    LUBRICATION SCIENCE, 2022, 34 (04) : 247 - 257
  • [23] Wear resistance and fracture mechanics of WC-Co composites
    Kaytbay, Saleh
    El-Hadek, Medhat
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2014, 105 (06) : 557 - 565
  • [24] Influence of Ca ions and temperature on the corrosion behavior of WC-Co hardmetals in alkaline solutions
    Kellner, F. J. J.
    Lynch, R.
    Virtanen, S.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (03) : 370 - 376
  • [25] The evaluation of tribo-corrosion synergy for WC-Co hardmetals in low stress abrasion
    Gant, AJ
    Gee, MG
    May, AT
    WEAR, 2004, 256 (05) : 500 - 516
  • [26] Indentation fatigue of WC grains in WC-Co composite
    Bl'anda, Marek
    Duszova, Annamaria
    Csanadi, Tamas
    Hvizdos, Pavol
    Lofaj, Frantisek
    Dusza, Jan
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (14) : 3407 - 3412
  • [27] Rate and microstructure influence on the fracture behavior of cemented carbides WC-Co and WC-Ni
    Jewell, P.
    Shannahan, L.
    Pagano, S.
    DeMott, R.
    Taheri, M.
    Lamberson, L.
    INTERNATIONAL JOURNAL OF FRACTURE, 2017, 208 (1-2) : 203 - 219
  • [28] Tribological Characteristics of WC-Ni and WC-Co Cemented Carbide in Dry Reciprocating Sliding Contact
    Bonny, Koenraad
    De Baets, Patrick
    Vleugels, Jozef
    Huang, Shuigen
    Lauwers, Bert
    TRIBOLOGY TRANSACTIONS, 2009, 52 (04) : 481 - 491
  • [29] Formation of (W,V)Cx layers at the WC/Co interfaces in the VC-doped WC-Co cemented carbide
    Sugiyama, I.
    Mizumukai, Y.
    Taniuchi, T.
    Okada, K.
    Shirase, F.
    Tanase, T.
    Ikuhara, Y.
    Yamamoto, T.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2012, 30 (01) : 185 - 187
  • [30] Rotating wheel abrasion of WC/Co hardmetals
    Gant, AJ
    Gee, MG
    Roebuck, B
    WEAR, 2005, 258 (1-4) : 178 - 188