Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide

被引:10
|
作者
Szutkowska, M. [1 ]
Boniecki, M. [2 ]
Cygan, S. [1 ]
Kalinka, A. [1 ]
Grilli, M. L. [3 ]
Balos, S. [4 ]
机构
[1] Inst Adv Mfg Technol, Krakow, Poland
[2] Inst Elect Mat Technol, Warsaw, Poland
[3] ENEA Energy Technol Dept, Rome, Italy
[4] Fac Tech Sci, Novi Sad, Serbia
来源
E-MRS FALL SYMPOSIUM I: SOLUTIONS FOR CRITICAL RAW MATERIALS UNDER EXTREME CONDITIONS | 2018年 / 329卷
关键词
Hardmetals; sintering HIP; fracture toughness; Palmqvist cracks; titanium carbide;
D O I
10.1088/1757-899X/329/1/012015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The addition of various amounts of TiC0.9 phase in the range from 5wt.% to 20wt.% substituting WC phase was applied in WC-Co hardmetals with 9.5 wt.% bonding cobalt phase. The hardmetals were consolidated using Hot Isostatic Pressing (HIP) method at temperature of 1573K and pressure of 1500 atm. The plain strain fracture toughness has been determined from 3PB test on a pre-cracking single edge notched beam (SENB) specimen. The indentation fracture toughness with Vickers cracks for comparison was also measured, which changed from 12 to 9.0 MPa.m(1/2). The amount of the TiC0.9 phase affected the mechanical and physical properties: Vickers hardness from 12.5 to 14.0 GPa, Young's modulus from 550 to 460 GPa, density from 13.1 to 9.6 g/cm(3), friction coefficient from 0.24 to 0.45, fracture toughness from 16.8 to 11.0 MPa.m(1/2). Scanning electron microscopy (SEM), X-ray and electron diffraction phase analysis were used to examine the WC-Co hardmetal with addition of the TiC0.9 phase. For comparison, physical and mechanical properties of the WC-Co hardmetals before modification were tested.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Grinding of WC-Co hardmetals
    Hegeman, JBJW
    De Hosson, JTM
    de With, G
    WEAR, 2001, 248 (1-2) : 187 - 196
  • [2] A study on the mechanical behaviour of WC/Co hardmetals
    Ferreira, J. A. M.
    Amaral, M. A. Pina
    Antunes, F. V.
    Costa, J. D. M.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2009, 27 (01) : 1 - 8
  • [3] Grain boundaries in WC-Co hardmetals with facetted and rounded WC grains
    Zaitsev, A. A.
    Sidorenko, D.
    Konyashin, I
    MATERIALS LETTERS, 2022, 306
  • [4] Gradient WC-Co hardmetals: Theory and practice
    Konyashin, I.
    Ries, B.
    Lachmann, F.
    Fry, A. T.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2013, 36 : 10 - 21
  • [5] Reactive Sintering of Bimodal WC-Co Hardmetals
    Tarraste, Marek
    Juhani, Kristjan
    Pirso, Jueri
    Viljus, Mart
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2015, 21 (03): : 382 - 385
  • [6] Interlaboratory Measurements of Contiguity in WC-Co Hardmetals
    Mingard, Ken P.
    Roebuck, Bryan
    METALS, 2019, 9 (03):
  • [7] Fracture toughness KIC of cemented carbide WC-Co
    Doi, S.
    Yasuoka, M.
    MATERIALS CHARACTERISATION IV: COMPUTATIONAL METHODS AND EXPERIMENTS, 2009, 64 : 217 - +
  • [8] Additive manufacturing of WC-Co hardmetals: a review
    Yang, Yankun
    Zhang, Chaoqun
    Wang, Dayong
    Nie, Liping
    Wellmann, Daniel
    Tian, Yingtao
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (5-6) : 1653 - 1673
  • [9] Microabrasion of WC-Co hardmetals in corrosive media
    Gant, AJ
    Gee, MG
    May, AT
    WEAR, 2004, 256 (9-10) : 954 - 962
  • [10] A new approach to fabrication of gradient WC-Co hardmetals
    Konyashin, I.
    Hlawatschek, S.
    Ries, B.
    Lachmann, F.
    Sologubenko, A.
    Weirich, T.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (02) : 228 - 237