Enhancing Mechanical Properties and Biological Performances of Injectable Bioactive Glass by Gelatin and Chitosan for Bone Small Defect Repair

被引:27
作者
Sohrabi, Mehri [1 ]
Eftekhari Yekta, Bijan [1 ]
Rezaie, Hamidreza [1 ]
Naimi-Jamal, Mohammad Reza [2 ]
Kumar, Ajay [3 ]
Cochis, Andrea [3 ]
Miola, Marta [4 ]
Rimondini, Lia [3 ]
机构
[1] Iran Univ Sci & Technol, Sch Met & Mat Engn, Tehran 1684613114, Iran
[2] Iran Univ Sci & Technol, Res Lab Green Organ Synth & Polymers, Dept Chem, Tehran 1684613114, Iran
[3] Univ Piemonte Orientale UPO, Ctr Translat Res Autoimmune & Allerg Dis CAAD, Dept Hlth Sci, I-28100 Novara, Italy
[4] Politecn Torino, Inst Mat Engn & Phys, Dept Appl Sci & Technol, I-10129 Turin, Italy
关键词
bioactive glass; gelatin; chitosan; 3-Glycidyloxypropyl trimethoxysilane; bone; IN-VITRO DEGRADATION; PHOSPHATE COMPOSITE SCAFFOLDS; BACTERIAL ADHESION; HYBRID MEMBRANE; HYALURONIC-ACID; STEM-CELLS; TISSUE; HYDROGELS; BIOMATERIALS; BIOCERAMICS;
D O I
10.3390/biomedicines8120616
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bioactive glass (BG) represents a promising biomaterial for bone healing; here injectable BG pastes biological properties were improved by the addition of gelatin or chitosan, as well as mechanical resistance was enhanced by adding 10 or 20 wt% 3-Glycidyloxypropyl trimethoxysilane (GPTMS) cross-linker. Composite pastes exhibited bioactivity as apatite formation was observed by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) after 14 days immersion in simulated body fluid (SBF); moreover, polymers did not enhance degradability as weight loss was >10% after 30 days in physiological conditions. BG-gelatin-20 wt% GPTMS composites demonstrated the highest compressive strength (4.8 +/- 0.5 MPa) in comparison with the bulk control paste made of 100% BG in water (1.9 +/- 0.1 MPa). Cytocompatibility was demonstrated towards human mesenchymal stem cells (hMSC), osteoblasts progenitors, and endothelial cells. The presence of 20 wt% GPTMS conferred antibacterial properties thus inhibiting the joint pathogens Staphylococcus aureus and Staphylococcus epidermidis infection. Finally, hMSC osteogenesis was successfully supported in a 3D model as demonstrated by alkaline phosphatase release and osteogenic genes expression.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 78 条
[21]  
Ghazvinizadeh, 2012, IRAN J MATER SCI ENG, V9, P33
[22]  
HABAL MB, 1994, CLIN PLAST SURG, V21, P525
[23]   BIOCERAMICS - FROM CONCEPT TO CLINIC [J].
HENCH, LL .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (07) :1487-1510
[24]   An alternative view of the degradation of bioglass [J].
Hill, R .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1996, 15 (13) :1122-1125
[25]   A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics [J].
Hoppe, Alexander ;
Gueldal, Nusret S. ;
Boccaccini, Aldo R. .
BIOMATERIALS, 2011, 32 (11) :2757-2774
[26]   Photocrosslinkable chitosan hydrogel as a wound dressing and a biological adhesive [J].
Ishihara, M .
TRENDS IN GLYCOSCIENCE AND GLYCOTECHNOLOGY, 2002, 14 (80) :331-341
[27]   Gelatin-based hydrogels for biomedical applications [J].
Jaipan, Panupong ;
Nguyen, Alexander ;
Narayan, Roger J. .
MRS COMMUNICATIONS, 2017, 7 (03) :416-426
[28]   Sulfated chitin and chitosan as novel biomaterials [J].
Jayakumar, R. ;
Nwe, N. ;
Tokura, S. ;
Tamura, H. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2007, 40 (03) :175-181
[29]   Graft copolymerized chitosan - present status and applications [J].
Jayakumar, R ;
Prabaharan, M ;
Reis, RL ;
Mano, JF .
CARBOHYDRATE POLYMERS, 2005, 62 (02) :142-158
[30]   Reprint of: Review of bioactive glass: From Hench to hybrids [J].
Jones, Julian R. .
Acta Biomaterialia, 2015, 23 (0S)