Transcriptomic Analysis of Tea Plant Responding to Drought Stress and Recovery

被引:170
|
作者
Liu, Sheng-Chuan [1 ,2 ]
Jin, Ji-Qiang [1 ]
Ma, Jian-Qiang [1 ]
Yao, Ming-Zhe [1 ]
Ma, Chun-Lei [1 ]
Li, Chun-Fang [1 ]
Ding, Zhao-Tang [3 ]
Chen, Liang [1 ]
机构
[1] Chinese Acad Agr Sci, Tea Res Inst, Key Lab Tea Plant Biol & Resources Utilizat, Minist Agr, Hangzhou, Zhejiang, Peoples R China
[2] Guizhou Tea Res Inst, Guiyang, Guizhou, Peoples R China
[3] Qingdao Agr Univ, Tea Res Inst, Qingdao, Shandong, Peoples R China
来源
PLOS ONE | 2016年 / 11卷 / 01期
基金
中国国家自然科学基金;
关键词
GENE-EXPRESSION; SALICYLIC-ACID; DEHYDRATION; ACTIVATION; TOLERANCE; RESPONSES;
D O I
10.1371/journal.pone.0147306
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tea plant (Camellia sinensis) is an economically important beverage crop. Drought stress (DS) seriously limits the growth and development of tea plant, thus affecting crop yield and quality. To elucidate the molecular mechanisms of tea plant responding to DS, we performed transcriptomic analysis of tea plant during the three stages [control (CK) and during DS, and recovery (RC) after DS] using RNA sequencing (RNA-Seq). Totally 378.08 million high-quality trimmed reads were obtained and assembled into 59,674 unigenes, which were extensively annotated. There were 5,955 differentially expressed genes (DEGs) among the three stages. Among them, 3,948 and 1,673 DEGs were up-regulated under DS and RC, respectively. RNA-Seq data were further confirmed by qRT-PCR analysis. Genes involved in abscisic acid (ABA), ethylene, and jasmonic acid biosynthesis and signaling were generally up-regulated under DS and down-regulated during RC. Tea plant potentially used an exchange pathway for biosynthesis of indole-3-acetic acid (IAA) and salicylic acid under DS. IAA signaling was possibly decreased under DS but increased after RC. Genes encoding enzymes involved in cytokinin synthesis were up-regulated under DS, but down-regulated during RC. It seemed probable that cytokinin signaling was slightly enhanced under DS. In total, 762 and 950 protein kinases belonging to 26 families were differentially expressed during DS and RC, respectively. Overall, 547 and 604 transcription factor (TF) genes belonging to 58 families were induced in the DS vs. CK and RC vs. DS libraries, respectively. Most members of the 12 TF families were up-regulated under DS. Under DS, genes related to starch synthesis were down-regulated, while those related to starch decomposition were up-regulated. Mannitol, trehalose and sucrose synthesis-related genes were up-regulated under DS. Proline was probably mainly biosynthesized from glutamate under DS and RC. The mechanism by which ABA regulated stomatal movement under DS and RC was partly clarified. These results document the global and novel responses of tea plant during DS and RC. These data will serve as a valuable resource for drought-tolerance research and will be useful for breeding drought-resistant tea cultivars.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress
    Muthusamy, Muthusamy
    Uma, Subbaraya
    Backiyarani, Suthanthiram
    Saraswathi, Marimuthu Somasundaram
    Chandrasekar, Arumugam
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [42] A comprehensive analysis of transcriptomic data for comparison of plants with different photosynthetic pathways in response to drought stress
    Karami, Shima
    Shiran, Behrouz
    Ravash, Rudabeh
    Fallahi, Hossein
    PLOS ONE, 2023, 18 (06):
  • [43] Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress
    Rasheed, Sultana
    Bashir, Khurram
    Matsui, Akihiro
    Tanaka, Maho
    Seki, Motoaki
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [44] Identification and expression analysis of PUB genes in tea plant exposed to anthracnose pathogen and drought stresses
    Liao, Hong-Ze
    Liao, Wang-Jiao
    Zou, Dong-Xia
    Zhang, Ri-Qing
    Ma, Jin-Lin
    PLANT SIGNALING & BEHAVIOR, 2021, 16 (12)
  • [45] Transcriptomic and metabolic responses of Calotropis procera to salt and drought stress
    Mutwakil, Mohammed Z.
    Hajrah, Nahid H.
    Atef, Ahmed
    Edris, Sherif
    Sabir, Mernan J.
    Al-Ghamdi, Areej K.
    Sabir, Meshaal J. S. M.
    Nelson, Charlotte
    Makki, Rania M.
    Ali, Hani M.
    El-Domyati, Fotouh M.
    Al-Hajar, Abdulrahman S. M.
    Gloaguen, Yoann
    Al-Zahrani, Hassan S.
    Sabir, Jamal S. M.
    Jansen, Robert K.
    Bahieldin, Ahmed
    Hall, Neil
    BMC PLANT BIOLOGY, 2017, 17
  • [46] Transcriptomic analysis of sweet potato under dehydration stress identifies candidate genes for drought tolerance
    Lau, Kin H.
    del Rosario Herrera, Maria
    Crisovan, Emily
    Wu, Shan
    Fei, Zhangjun
    Awais Khan, Muhammad
    Buell, Carol Robin
    Gemenet, Dorcus C.
    PLANT DIRECT, 2018, 2 (10)
  • [47] Genomic and Transcriptomic Analysis Identified Novel Putative Cassava lncRNAs Involved in Cold and Drought Stress
    Suksamran, Rungaroon
    Saithong, Treenut
    Thammarongtham, Chinae
    Kalapanulak, Saowalak
    GENES, 2020, 11 (04)
  • [48] Transcriptomic study of Suaeda salsa in response to salt and drought stress
    Ding, Zhijie
    Liu, Zhiyou
    Bao, Jinbo
    Wang, Yuwei
    Li, Jialei
    Wang, Qiuyan
    Tian, Xinmin
    FUNCTIONAL PLANT BIOLOGY, 2023, 50 (10) : 765 - 776
  • [49] Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis
    Yeyun Li
    Xuewen Wang
    Qiuyan Ban
    Xiangxiang Zhu
    Changjun Jiang
    Chaoling Wei
    Jeffrey L. Bennetzen
    BMC Genomics, 20
  • [50] Understanding the Impact of Salt Stress on Plant Pathogens Through Phenotypic and Transcriptomic Analysis
    Jung, Hyejung
    Han, Gil
    Lee, Duyoung
    Jung, Hyun-Kyoung
    Kim, Young-Sam
    Kong, Hee Jeong
    Kim, Young-Ok
    Seo, Young-Su
    Park, Jungwook
    PLANTS-BASEL, 2025, 14 (01):