Advances in the Synthesis of Small Molecules as Hole Transport Materials for Lead Halide Perovskite Solar Cells

被引:133
作者
Rodriguez-Seco, Cristina [1 ]
Cabau, Lydia [1 ]
Vidal-Ferran, Anton [1 ,2 ]
Palomares, Emilio [1 ,2 ]
机构
[1] Barcelona Inst Sci & Technol ICIQBIST, Inst Chem Res Catalonia, Avda Paisos Catalans 16, E-43007 Tarragona, Spain
[2] ICREA, Passeig Lluis Co 23, E-08010 Barcelona, Spain
关键词
HIGHLY EFFICIENT; HIGH-PERFORMANCE; COPPER PHTHALOCYANINE; SELECTIVE CONTACT; FACILE SYNTHESIS; POLYMER; DOPANT; DERIVATIVES; PORPHYRIN; DESIGN;
D O I
10.1021/acs.accounts.7b00597
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Over hundreds of new organic semiconductor molecules have been synthesized as hole transport materials (HTMs) for perovskite solar cells. However, to date, the well-known N-2,N-2,N-2',N-2',N-7,N-7,N-7', octakis-(4-methoxyphenyl)-9,9-spirobi-[9,9'-spirobi[9H-fluorene]-2,2',7,7'-tetramine (spiro-OMeTAD) is still the best choice for the best perovskite device performance. Nevertheless, there is a consensus that spiro-OMeTAD by itself is not stable enough for long-term stable devices, and its market price makes its use in large-scale production costly.& para;& para;Novel synthetic routes for new HTMs have to be sought that can be carried out in fewer synthetic steps and can be easily scaled up for commercial purposes. On the one hand, synthetic chemists have taken, as a first approach, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the spiro-OMeTAD molecule as a reference to synthesize molecules with similar energy levels, although these HOMO and LUMO energy levels often have been measured indirectly in solution using cyclic voltammetry. On the other hand, the "spiro" chemical core has also been studied as a structural motif for novel HTMs. However, only a few molecules incorporated as HTMs in complete functional perovskite solar cells have been capable of matching the performance of the best-performing perovskite solar cells made using spiro-OMeTAD.& para;& para;In this Account, we describe the advances in the synthesis of HTMs that have been tested in perovskite solar cells. The comparison of solar cell efficiencies is of course very challenging because the solar cell preparation conditions may differ from laboratory to laboratory. To extract valuable information about the HTM molecular structure-device function relationship, we describe those examples that always have used spiro-OMeTAD as a control device and have always used identical experimental conditions (e.g., the use of the same chemical dopant for the HTM or the lack of it).& para;& para;The pioneering work was focused on well-understood organic semiconductor moieties such as arylamine, carbazole, and thiophene. Those chemical structures have been largely employed and studied as HTMs, for instance, in organic light-emitting devices. Interestingly, most research groups have reported the hole mobility values for their novel HTMs. However, only a few examples have been found that have measured the HOMO and LUMO energy levels using advanced spectroscopic techniques to determine these reference energy values directly. Moreover, it has been shown that those molecules, upon interacting with the perovskite layer, often have different HOMO and LUMO energies than the values estimated indirectly using solution-based electrochemical methods. Last but not least, porphyrins and phthalocyanines have also been synthesized as potential HTMs for perovskite solar cells. Their optical and physical properties, such as high absorption and good energy transfer capabilities, open new possibilities for HTMs in perovskite solar cells.
引用
收藏
页码:869 / 880
页数:12
相关论文
共 60 条
[1]   Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells [J].
Abate, Antonio ;
Paek, Sanghyun ;
Giordano, Fabrizio ;
Correa-Baena, Juan-Pablo ;
Saliba, Michael ;
Gao, Peng ;
Matsui, Taisuke ;
Ko, Jaejung ;
Zakeeruddin, Shaik M. ;
Dahmen, Klaus H. ;
Hagfeldt, Anders ;
Graetzel, Michael ;
Nazeeruddin, Mohammad Khaja .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2946-2953
[2]   Hole-transport materials with greatly-differing redox potentials give efficient TiO2- [CH3NH3][PbX3] perovskite solar cells [J].
Abate, Antonio ;
Planells, Miquel ;
Hollman, Derek J. ;
Barthi, Vishal ;
Chand, Suresh ;
Snaith, Henry J. ;
Robertson, Neil .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (04) :2335-2338
[3]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[4]   Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells [J].
Bryant, Daniel ;
Aristidou, Nicholas ;
Pont, Sebastian ;
Sanchez-Molina, Irene ;
Chotchunangatchaval, Thana ;
Wheeler, Scot ;
Durrant, James R. ;
Haque, Saif A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1655-1660
[5]   Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells [J].
Burschka, Julian ;
Dualeh, Amalie ;
Kessler, Florian ;
Baranoff, Etienne ;
Cevey-Ha, Ngoc-Le ;
Yi, Chenyi ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (45) :18042-18045
[6]   Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells [J].
Chen, Song ;
Liu, Peng ;
Hua, Yong ;
Li, Yuanyuan ;
Kloo, Lars ;
Wang, Xingzhu ;
Ong, Beng ;
Wong, Wai-Kwok ;
Zhu, Xunjin .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13231-13239
[7]   Novel Small Molecular Materials Based on Phenoxazine Core Unit for Efficient Bulk Heterojunction Organic Solar Cells and Perovskite Solar Cells [J].
Cheng, Ming ;
Chen, Cheng ;
Yang, Xichuan ;
Huang, Jing ;
Zhang, Fuguo ;
Xu, Bo ;
Sun, Licheng .
CHEMISTRY OF MATERIALS, 2015, 27 (05) :1808-1814
[8]   Molecularly Engineered Phthalocyanines as Hole-Transporting Materials in Perovskite Solar Cells Reaching Power Conversion Efficiency of 17.5% [J].
Cho, Kyung Teak ;
Trukhina, Olga ;
Roldan-Carmona, Cristina ;
Ince, Mine ;
Gratia, Paul ;
Grancini, Giulia ;
Gao, Peng ;
Marszalek, Tomasz ;
Pisula, Wojciech ;
Reddy, Paidi Y. ;
Torres, Tomas ;
Nazeeruddin, Mohammad Khaja .
ADVANCED ENERGY MATERIALS, 2017, 7 (07)
[9]   Efficient, symmetric oligomer hole transporting materials with different cores for high performance perovskite solar cells [J].
Choi, Hyeju ;
Park, Sojin ;
Kang, Moon-Sung ;
Ko, Jaejung .
CHEMICAL COMMUNICATIONS, 2015, 51 (85) :15506-15509
[10]   Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell [J].
Choi, Hyeju ;
Park, Sojin ;
Paek, Sanghyun ;
Ekanayake, Piyasiri ;
Nazeeruddin, Mohammad Khaja ;
Ko, Jaejung .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (45) :19136-19140