MICROLOCAL EULER CLASSES AND HOCHSCHILD HOMOLOGY

被引:2
作者
Kashiwara, Masaki [1 ,2 ]
Schapira, Pierre [3 ,4 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068501, Japan
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151, South Korea
[3] Univ Paris 06, Inst Math, F-75252 Paris 05, France
[4] Univ Luxembourg, Math Res Unit, Luxembourg, Luxembourg
基金
日本学术振兴会;
关键词
sheaves; D-modules; microlocal sheaf theory; Euler classes; RIEMANN-ROCH THEOREMS; DEFORMATION QUANTIZATION; CYCLIC HOMOLOGY;
D O I
10.1017/S1474748013000169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the notion of a trace kernel on a manifold M. Roughly speaking, it is a sheaf on M x M for which the formalism of Hochschild homology applies. We associate a microlocal Euler class with such a kernel, a cohomology class with values in the relative dualizing complex of the cotangent bundle T*M over M, and we prove that this class is functorial with respect to the composition of kernels. This generalizes, unifies and simplifies various results from (relative) index theorems for constructible sheaves, D-modules and elliptic pairs.
引用
收藏
页码:487 / 516
页数:30
相关论文
共 24 条